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Sedimentation Velocity:

Optimization Methods:

2-dimensional Spectrum Analysis (2DSA):
Provides degenerate, linear fit to experimental data over a finite 

domain, identifying regions with signal in the mass/shape domain, 
used to remove systematic noise contributions

Genetic Algorithms (GA):
Provides parsimonious regularization of 2DSA spectrum. Satisfies 

Occam's razor. Also used for fitting of discrete, non-linear models 
(reversible association, non-ideality, co-sedimenting solutes)

Monte Carlo Analysis (MC) 
Used to measure the effect of noise on the fitted parameters, yields 

parameter distribution statistics

Parametrically Constrained Spectrum Analysis (PCSA)
Used to regularize 2-dimensional spectrum analysis. Enforce a unique 

mapping of one molar mass/sedimentation coefficient per frictional 
ratio.



Flow in the Ultracentrifuge Cell
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The Lamm Equation can be solved with the finite element Method

Cao W and Demeler B. Modeling analytical ultracentrifugation experiments with an adaptive 
space-time finite element solution of the Lamm equation. (2005) Biophys J. 89(3):1589-602.

Cao, W and Demeler B. Modeling Analytical Ultracentrifugation Experiments with an Adaptive 
Space-Time Finite Element Solution for Multi-Component Reacting Systems. Biophys. J. (2008) 
95(1):54-65

Boundary
Condition: C = 0 for r  a ∧ r  b



Nonlinear Least Squares Finite Element Fitting

Direct boundary fitting uses a nonlinear least squares minimization approach to fit 
a model function (a sum of Lamm equations) Y* to an experimental dataset Y:

Our model:

The model is compared to the experimental data in the least squares sense for 
each data point in the experiment (over time and radius)

here, c, b, s and D are nonlinear parameters, and are adjusted independently in an 
iterative fit. 
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Nonlinear Least Squares Finite Element Fitting

Finite Element - Nonlinear Least Squares (RMSD: 4.61 x 10-3) Monte 
Carlo is needed to define statistical confidence of fitted parameters.

M1:  128.8 kD (135.7 kD) 
f/f0: 3.10
s1:  5.43 x 10-13

D1:  2.28 x 10-7

M2:  14.6 kD (14.3 kD)
f/f0: 1.29
s2:  1.71 x 10-13

D2:  1.02 x 10-7



The Optimization Challenge:

Problem with nonlinear least squares optimization:

For multi-component systems, the nonlinear least squares fitting 
algorithm gets easily stuck in local minima and the solution 
depends on the starting points. Problem gets worse with more 
parameters (i.e., multiple components).



The Optimization Challenge:

1. For complicated problems, nonlinear optimization will fail and the 
fitting algorithm will not converge to the global optimum.

2. In addition, due to noise the solution will not be unique and there 
will be an infinite number of equally likely solutions with the same χ2 

How do we get around these problems?

Problem 1 can be alleviated by linearizing the problem

Problem 2 is intractable. The best we can do is to perform a statistical 
error analysis and use Monte Carlo methods.



Linear Approach
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Note: This generates a grid over all possible s and D values. Each s and D  pair in the 
grid represents a complete solution of the Lamm equation, and the Amplitude c

j
 defines 

the partial concentration of each pair. 

ALL PARAMETERS EXCEPT THE AMPLITUDES ARE CONSTANT!

 * Lawson, C. L. and Hanson, R. J. 1974. Solving Least Squares Problems. Prentice-Hall, Inc. Englewood 
Cliffs, New Jersey

Perform a linear fit using the NNLS method* and only fit the 
amplitudes c
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2-Dimensional Spectrum Analysis

Build a 2-dimensional grid of         
shape (s and D) and size (s)

 
values

Find the concentrations of the parame-
ter pairs that match the original data 
when modeled by least squares. This 
is a linear problem that avoids the pit-
falls of nonlinear LS optimization

Locate signal in the 2-dimensional 
spectrum space
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2-Dimensional Spectrum Analysis

This is a very large problem, but one that can fortunately be 
calculated in a single iteration, with one Lamm equation for each 
coordinate point in the grid:

Using NNLS for this problem guarantees c
s, k

 > 0

    m = # of radial points * # of time points = 1000 * 100 = 100,000

     n = # of sedimentation value grid points (~30 - 50)

     f = # of f/f0 value grid points (~30-50)

Total size: 250 million * 4 bytes/value + workspace, altogether > 1 GB
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2-D Spectrum Analysis - Refinement:

Step 1: Start with a coarse grid definition:



2-D Spectrum Analysis - Refinement:

Step 2: Perform NNLS



2-D Spectrum Analysis - Refinement:

Step 3: Save non-zero elements into a separate array



2-D Spectrum Analysis - Refinement:

Step 4: Shift grid into Y-direction



2-D Spectrum Analysis - Refinement:

Step 5: Perform NNLS again, but only on the shifted grid (blue)



2-D Spectrum Analysis - Refinement:

Step 6: Add the newly found non-zero elements to the stored 
array



2-D Spectrum Analysis - Refinement:

Step 7: Now shift the grid into the X-direction



2-D Spectrum Analysis - Refinement:

Step 8: Perform NNLS on the shifted grid again



2-D Spectrum Analysis - Refinement:

Step 9: Add the new non-zero elements to the stored array



2-D Spectrum Analysis - Refinement:

Step 10: Complete the square and shift the grid once more in the
               Y-direction



2-D Spectrum Analysis - Refinement:

Step 11: Perform NNLS on the new grid



2-D Spectrum Analysis - Refinement:

Step 12: ... and add the non-zero points to the storage array



2-D Spectrum Analysis - Refinement:

Repeat this process 
until the desired grid 
size has been reached



2-D Spectrum Analysis - Refinement:

Divide and Conquer approach – evaluate multiple grids slightly off-set against 
each other, and accumulate results:

Final result is fairly sparse, but it is also degenerate, includes false positives and 
needs further refinement. It can be used to identify regions that contain signal.



2-D Spectrum Analysis - Refinement:

Step 13: Now take the storage array and perform one last NNLS      
               iteration on it to filter out unnecessary elements 



2-D Spectrum Analysis - Refinement:

Step 14: Take the final grid and add it back to all starting grids.       
               Redo the analysis until there is no more change to             
               guarantee equivalence with the original fine-grained grid.



Moving Grid Approach – parallel HPC implementation

Calculate each individual grid in 

parallel .... Grid
1

Grid
1

Grid
2

Grid
3

Grid
4

Grid
1

Grid
5

Grid
6

Grid
7

Sub
Grid 1

Sub
Grid 2

Combine ..

.. 

Merge .

... Final
Grid

Evaluate each grid on a different processor, and communicate by 
MPI

Iterate until there is no more change .... 



Final Result is used to initialize GA

Final Solution is 
sparse, but still 
on a grid...



Final Result is used to initialize GA

Idea:

Build probability 
surfaces around 
each non-zero 
entry and use the 
surface to 
initialize the GA.

Surfaces can be 
circular, elliptical, 
or rectangular

Probabilities from 
neighboring 
points add up.



Genetic Algorithms (GA) 

Genetic algorithms provide a stochastic optimization method

John H Holland, Adaption in Natural and Artificial Systems, 1975, U. of Michigan 
Press

John R Koza, Genetic Programming: On the Programming of Computers by Means 
of Natural Selection, 1992, MIT Press

Evolutionary paradigm - mutation, recombination, deletion, insertion, and 
crossover operators are used for adjusting parameters

Random number generators are used to manipulate operators

Generational Model – survival of the fittest (...fitting function)

Generation → iterations, genes → parameter strings, bases → s, D



GA genes:

S1 S2 S3 ... Sn
D1 D2 D3 ... Dn

Gene:

Component 1

Component 2

Component 3

Component n

Genes are strings of parameters defining all components in the 
finite element solution, each component is represented by a pair 
of corresponding sedimentation and diffusion coefficients.



Crossover/Recombination 

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Recombination

Generation 2

Gene B

S1b S2b S3a ... Sna
D1b D2b D3a ... Dna

S1a S2a S3b ... Snb
D1a D2a D3b ... Dnb



Mutation 

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Mutation

Generation 2

Gene B

S1a S2a S3a ... Snc
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2c D3b ... Dnb



Deletion

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Deletion

Generation 2

Gene B

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S3b ... Snb
D1b D3b ... Dnb



Insertion

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Insertion

Generation 2

Gene B

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b S4b ... Snb
D1b D2b D3b D4b ... Dnb



Parsimonious Regularization

When fitting noisy data with least squares, the fit with the optimal 
RMSD does NOT represent a unique solution.

According to Occam's Razor, the simplest solution with an RMSD 
close to the best RMSD solution (which may be more complex) is 
to be preferred.

In the optimization process, parsimony in the parameterization is 

favored by applying a penalty (a) to the fitness value ( j = number 

of components, or basis functions, m is the model and d is the 
data)
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Deme Topology

G12

G11
G13

G1n

G42

G41
G43

G4n

G22

G21
G23

G2n

G32

G31 G33

G3n

Deme 1

Deme 2

Deme 4

Deme 3



Results:

Genetic Algorithms... 

...have excellent convergence properties

...find a parsimonious solution and provide good regularization

...resolve more solutes reliably than any other method

...solve the general Lamm equation optimization problem

...are robust and can be used to solve highly nonlinear problems

…can be implemented on a parallel supercomputer

…work well for fitting large, global systems

Brookes, E. and B. Demeler. Genetic Algorithm Optimization for obtaining accurate Molecular Weight 
Distributions from Sedimentation Velocity Experiments. Analytical Ultracentrifugation VIII, Progr. Colloid 
Polym. Sci.131:78-82. C. Wandrey and H. Cölfen, Eds. Springer (2006)

Brookes, E and B. Demeler. Parsimonious Regularization using Genetic Algorithms Applied to the Analysis of 
Analytical Ultracentrifugation Experiments. GECCO Proceedings ACM 978-1-59593-697-4/07/0007 (2007) 



2-D Spectrum Analysis refinement - Example:

Simulate a 5-component system with heterogeneity in 
shape and mass

Add stochastic noise equivalent to XLA

MW kD s D f/f0 conc.
25 2.676E-13 9.2736E-7 1.2 0.1
50 3.641E-13 6.3089E-7 1.4 0.1

100 5.058E-13 4.3821E-7 1.6 0.1
200 7.136E-13 3.0912E-7 1.8 0.1
400 1.020E-12 2.2092E-7 2 0.1



2-D Spectrum Analysis refinement - Example:

Final result is not parsimonious – doesn't satisfy Occam's razor
Solution is over-determined
Noise contributes to false positives



2-D Spectrum Analysis refinement - Example:

Perform 2DSA Monte Carlo analysis to amplify signal linearly
Stochastic noise only amplifies with 2



2-D Spectrum Analysis - Refinement:

Stochastic noise signals disappear when frequency is plotted
Sample signal is amplified



2-D Spectrum Analysis - Refinement:

Identify potential solutes and reduce parameter parameters 
space using “buckets”

Use buckets to initialize GA analysis



Genetic Algorithm Analysis - Refinement:

Genetic Algorithm produces parsimonious solution
Still affected by stochastic noise



Genetic Algorithm Monte Carlo Analysis

Perform GA Monte Carlo analysis

X
X

X
X

X



Global Genetic Algorithm Monte Carlo Analysis

Add low-speed data to emphasize diffusion signal
Perform global GA Monte Carlo analysis



Global 20/60 krpm Monte Carlo Analysis 
Results

Solute Molecular Weight (kD) Partial Concentration Frictional Ratio, f/f0

1 24.26 (24.20, 24.33) [25] 0.0972 (0.0966, 0.0982) [0.1] 1.21 (1.21, 1.21) [1.2]

2 48.04 (47.74, 48.46) [50] 0.102 (0.101, 0.104) [0.1] 1.41 (1.40, 1.42) [1.4]

3 100.2 (97.96, 101.8) [100] 0.0995 (0.0982, 0.101) [0.1] 1.65 (1.63, 1.67) [1.6]

4 198.0 (194.2, 200.8) [200] 0.0996 (0.0989, 0.101) [0.1] 1.84 (1.82, 1.86) [1.8]

5 385.3 (380.4, 394.0) [400] 0.100 (0.100, 0.101) [0.1] 2.01 (1.99, 2.04) [2.0]

Monte Carlo Results from a global genetic algorithm optimization using multi-
speed data. The results demonstrate remarkable agreement with the original target
model. Round brackets: 95% confidence intervals; square brackets: target value.
All values rounded off to 3 or 4 significant digits.

*
*

*

*
*

*

*

*

*
*

***
*

*

*    0% error for 95% confidence interval 

* < 2% error for 95% confidence interval 

* < 5% error for 95% confidence interval 



Homework (p1 of 3)



Homework (p2 of 3)

(A) Given the molecular weights and diffusion coefficients in the table, 
calculate the following values for Bovine Serum Albumin (vbar = 0.732 ml/g), 
Ribonuclease (vbar = 0.708 ml/g), Myosin (vbar = 0.731 ml/g), and for a 
208 bp double-stranded DNA fragment (vbar = 0.55 ml/g, D=1.9x10-7 cm2/sec, 
MW=131,000 Da):

1. sedimentation coefficient (10%), 2. frictional ratio (10%), 3. Stokes radius 
(10%), 4. minimal radius (10%)

5. Which of these molecules is most non-globular? (10%)

6. Using your answer from (3), calculate the amount of water for each protein 
that would have to be bound to account for the Stokes radius of the molecule 
in terms of the ratio of grams of water : grams of protein. Is that reasonable? 
(10%)



Homework (p3 of 3)

(B) Indicate if s and D increase, decrease or stay the same when the following 
events occur, and justify your answer:

1. an anisotropic (asymmetric) monomeric protein aggregates into a large 
globular blob (8 %)

2. a monomeric protein unit elongates through head-to-tail association, forming 
a fibril shape (8 %)

3. a DNA molecule is dialyzed from a 500 mM NaCl solution into a 5 mM NaCl 
solution (8 %)

4. a globular, well-folded protein unfolds into a denatured state  (8 %)

5. a monomeric, globular protein associates to form a globular hexamer (8 %)

Show ALL work, print legibly!



Homework

a) The anhydrous density of a protein is 1.43 g/ml. When measured in the 
ultracentrifuge, the partial specific volume was determined to be 0.742 ml/g. 
How many microliters of water are bound to 1 ml of solvated protein? Assume 
a water density of 1 g/ml.

b) A researcher studies a 50 kDa protein by sedimentation velocity. At high 
salt, Genetic algorithm Monte Carlo analysis shows a single species with a 
mean s-value of 3.5 S and a frictional ratio of about 1.45. As the salt 
concentration.is decreased, a second species appears with an s-value of 
about 6.6 S and a frictional ratio of about 1.23. Assume the partial specific 
volume is constant at all salt concentrations at 0.72 ml/g. Explain a possible 
model for this observation. What can you conclude about the function of salt 
with respect to any oligomerization? What can you conclude about the 
oligomerization state? Draw a model of a molecule that would match these 
observations (Hint: keep in mind the frictional ratios!)



Homework

c) A researcher has created a 2,500 basepair DNA molecule with 12 nucleosome binding sites 
and reconstitutes the DNA with histone proteins to create an artificial chromatin molecule. He 
wants to find out what the effect of adding magnesium is on the reconstituted molecule, and 
performs velocity experiments in 0, 0.5 and 2 mM MgCl2. He observes a heterogeneous s-
value distribution (see next page). To his surprise, an equilibrium experiment when analyzed 
with an lnC vs. r^2-r0^2 plot revealed a good fit to a straight line. The slope of the linear fit for 
all salt concentrations was identical and gave a value of 2.092. (assume 20C, 3000 rpm, a 
viscosity of 0.01poise, a density of 1.0 g/ccm for all salt concentrations, vbar of 0.65 g/ccm) 

c1) What do you conclude from the velocity results? Explain the different distributions 
observed and what they indicate. Suggest at least two sample characteristics that could 
account for the observed velocity distributions.

c2) What do you conclude from the equilibrium results? Explain. 

c3) How can you reconcile the equilibrium results with the velocity results? Explain. Calculate 
the molecular weight suggested by the slope. What does it say about the chromatin molecule 
(hint: a histone octamer is about 111.5 kDa, the average DNA molecular weight is ~660 Da/bp.)

c4) Suggest what may have happen to the chromatin molecule as magnesium chloride is 
added to the buffer. Suggest a model that will account for these results. 

c5) calculate the frictional ratio for the 27S and the fastest moving species in each salt conc.



Homework


