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Survey of Numerical Modeling

We will touch on the following subjects:

Model Building
● Exact models
● smoothing

Theory of Fitting
● What is a good fit and how can it be measured?

Parameter Estimation
Optimization – how do I fit the model to the data?

● Linear vs. non-linear least squares
● Linearization of non-linear systems
● Brute force methods – Grid searches
● Stochastic Methods – Genetic algorithms

Effect of noise on analysis
Statistical analysis and Monte Carlo approaches
Parallel Implementation



Data Fitting

Modeling involves the description of some observable data 
(experimental measurements) using a mathematical equation that 
describes the underlying physical properties of the experiment.

First, we need to identify a general, mathematical model that can 
represent the observed data. The parameters of the model describe 
the specifics of the data.

Second, we need to determine the values of the parameters in the 
model that best fit our data. This is accomplished by a fitting 
algorithm that minimizes the difference between the data and model. 
Generally, an initial estimate is required that is then improved.

Finally, we need to estimate the error in the parameters we 
determined in the fitting process and obtain the confidence 
intervals.



Model Building

To build a model, one needs to understand the physical 
properties of the observed process. Many processes can be 
described by differential equations. When solved, these 
equations describe a linear or nonlinear model:

Example – radioactive decay:

Hypothesis: The rate of decay is proportional to the number 
of nuclei present.

Mathematical model:

Solve: 

∂ N
∂ t

= − a N

N = N 0 e−a (t−t 0)+b



You start with some experimental data...

Absorption data from multiple concentrations fitted to a sum of Gaussian functions



You start with some experimental data...

Absorption data from multiple concentrations fitted to a sum of Gaussian functions
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Method of Least Squares

Fitting Data to a Model by the Method of Least Squares:

Any observable process that influences the measurement 
needs to be accounted for in order for the model to yield 
meaningful results. The object is then to minimize the 
residuals between the model and the data:

Extracting parameters from a simulated solution by fitting the 
model to experimental data is called an “Inverse Problem”

A non-parametric fit is used to smooth data for display, where 
the intrinsic model is of little interest, and hence the 
parameters are not needed. 

MIN ∑
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You start with some experimental data...

Absorption data from multiple concentrations fitted to a sum of Gaussian functions

OD = a∑
i=1

n

ci e
[−(x i−μ i )
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2σi
2 ]

+b

Parameters aren't really 

useful here (except outer 

amplitudes), model is 

only used to find a 

smoothing shape that 

can be scaled to the 

appropriate 

concentration



Method of Least Squares

Assumptions made in the Method of Least Squares:

The model is a truthful representation of reality

All error is associated with the dependent variable. 
We can scale the reliability of each observation 
with an uncertainty factor σ

i
. 

All experimental noise is considered to be of 
Gaussian distribution
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Experimental Uncertainties

The uncertainty of a measurement can be determined by repeating 
the experiment several times. Each time, a slightly different value 
is obtained for the experimental observation. Assuming a 
Gaussian distribution of errors in the measurement, one can 
determine the standard deviation σ of the distribution of 
measurement values, and use σ to set error bars on a 
measurement and to scale the contribution of a datapoint to the 
sum of the residuals.

The standard deviation can be 
calculated by using this formula:

where     is the average of all
measurements.

 =  1n ∑i=1
n

 x i − x 
2

x



Fitting Basics

For a straight line
we have:      y = a + bx

The least squares equation
Is given by:

The distances
are measured
perpendicular
to the data. 

The object is to 
find the equation
of the straight line
that minimizes the
distance between
the straight line and
the data points.

∑
i=1

n

 Di − a − b x i

 i

2

= 
2
a , b

∑
i=1

n
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Fitting Basics

What is an error 
surface?

Each parameter
combination a, b 
results in a unique 
error when fitted to
the experimental
data. 
The optimal 
solution occurs 
where the error is 
the smallest.
Ideally, the error 
surface is 
continuously
differentiable.               Error surface for some function y = F(a, b)



Solving the Least Squares Equation

The minimum in the differences occur where the derivative of 
our objective function with respect to the parameters is zero, 
so we need to differentiate it with respect to the parameters 
of interest, a and b:
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Solving the Least Squares Equation

This leads to a system of linear equations:

Or, in matrix form:
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Solving the Least Squares Equation

Let: 

(where x
1
 = a (i.e., intercept) and x

2
 = b (i.e., slope))

In matrix notation: AX = B, with solution A-1AX = A-1B = X

The equations can be solved either by inverting A or by using 
Cramer's Rule:

x1 =
b1a22 − b2a12
a11a22−a12a21

, x2 =
b2a11 − b1a21
a11a22−a12 a21
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Goodness of fit

The quality of the fit is determined by the randomness of the 
residuals and the root mean square deviation (RMSD).

The randomness of the residuals can be measured by determining 
the runs. Runs (R) are the number of consecutive positive (p) or 
negative (n) residuals from the mean.

RT =
R−R̄
σR

R̄ =
2np
n+ p

+1

σR
2

=
2np (2np−n−p )

(n+ p )
2

(n+ p−1 )

The RT value is a measure of 
randomness and can be compared 
to a normal table to find out the 
probability of the test being random



Linear Models

The equation of a straight line is considered a linear equation:

y = a + bx

This equation is linear in the coefficients that are fitted. The 
equation doesn't have to be that of a straight line to be 
considered linear.

y = a + bx + cx2 + dx3 + ex4 + ...

As long as the coefficients are linear, the equation is 
considered a linear fitting equation, no matter how wildly 
nonlinear the terms of the independent variable are:

y = a + b(x – sin(x3)) + c e-(4-3x) + d ln(3x4) + ...

In general, we can write for any linear equation:

y = a
1
X

1
 + a

2
X

2
 + a

3
X

3
 + a

4
X

4
 +...

where X
i
 can be any nonlinear term.



Linear Models

Linearization of a nonlinear equation:

Turn                    into a linear function of the form:

y = a + bx

take log on both sides:

Fitting the log of y reduces the nonlinear equation to a linear
equation, y* = a* + bx, where y* = ln y and a* = ln a.

y = aebx

ln y = ln a  bx



Parameter Constraints

Sometimes, we may want to constrain the value of a 
parameter – for example, we don't want the amplitude of an 
exponential to turn negative during fitting:

By making the transformation to fitting the log of a number 
we can assure that the number itself will never be negative 
(negative amplitudes don't make sense in many physical 
models). 

y = a ebx
 c = e ln a  bx

 c



Nonlinear Regression

Why is it such a big deal if an equation is linear or nonlinear?
It turns out that nonlinear functions need to be fitted using 
iterative approaches, while linear functions can be fitted in a 
single iteration, so it helps to have the objective function in a 
linear form. For nonlinear systems, a Jacobian is defined.

J = 〚
∂ X
∂a1 x1 ∂ X

∂a2 x1

... ∂ X
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∂a2 x2

... ∂ X
∂ an

x2

... ... ... ...

∂ X
∂a1 xm ∂ X

∂a2 xm

... ∂ X
∂an

xm

〛
The idea: Iteratively improve 
the parameter estimates by 
following along the gradient 
of the error function in the 
direction of maximum 
“improvement”. This 
requires knowledge of the 
partial derivatives for each 
parameter at each point in 
the experiment. We build the 
Jacobian matrix:



Nonlinear Regression

Our equation is:      J * R = Δy, with R = a - g

where J is the Jacobian matrix, g is the current parameter estimate, 
a is the adjustment made to the parameter estimate in the current 
iteration, this is the value we need to find. Δy is the difference 
between the experimental data and the model

Solve for a:      JTJ  R = JT  Δy, substitute JT  Δy = B, 
Option 1: use inverse: (JTJ )-1 JTJ  R = R = (JTJ )-1 JT  Δy
Option 2: JTJ is positive definite, so use Cholesky decomposition:
JTJ = LLT

L(LTR) = B, substitute LTR = Z, to get LZ = B and solve for Z using 
forward substitution, then solve for R using backward substitution: 
LTR = Z, then solve for a to get the adjustment for the parameter. 

Iterate until converged.



Optimization Methods

Linear Optimization:

Straight line fits
Generalized linear least squares - single iteration 

fitting of objective functions of the type:

NNLS (non-negative constrained least squares):

Multidimensional spectrum analyses                (HPC 
recommended)

Non-parametric fits (B-splines, polynomial 
smoothing, etc)

y = a0∑
i=1

n

ai X i , −∞  ai ∞

y = a0∑
i=1

n

ai X i , ai ≥ 0



Optimization Methods

Nonlinear Optimization using Gradient Descent Methods
for functions of the type:

Levenberg-Marquardt (stable, robust, works well even if initial 
guesses are rather far away from optimum)

Gauss-Newton methods
Quasi-Newton (works well near optimum)
Conjugate gradients
Tangent approximation methods (derivatives are not required)
Neural networks

y = F ai , x i



The Optimization Challenge:

Problem with nonlinear least squares optimization:

For multi-component systems, the nonlinear least squares fitting 
algorithm gets easily stuck in local minima and the solution depends 
on the starting points. Problem gets worse with more parameters 
(i.e., multiple components).



Optimization Methods

Stochastic Methods

Monte Carlo
Simulated Annealing
Random walk
Genetic Algorithms



Optimization Methods

Comparison Stochastic vs Deterministic Fitting Methods:

Stochastic:
● Large search space possible
● Generally slow converging
● Excellent convergence properties if given enough time
● Compute-intensive
● Suitable for many parameters
● Good for ill-conditioned error surfaces
● Derivatives not needed

Deterministic:
● Small search space
● Suitable for a few parameters only
● Well-conditioned error surface
● Very fast converging
● Requires derivatives



Fitting of noisy data prevents unique solutions – multiple solutions are possible.

We need to minimize noise when modeling data.

There are three ways to reduce or eliminate noise:

1. fit the noise
2. maintain an exceptionally well tuned instrument
3. design your experiment to optimize the quality of the data 

There are two noise types:

1. Systematic noise: Signal comes from a systematic source that is not part of 
the parametric model (finger print on the lens of a camera) and is highly 
correlated with some feature of the experiment.

2. Stochastic (random noise): Noise is (hopefully) Gaussian in distribution and 
uncorrelated to any feature of the experiment

(1) can often be fitted and accounted for, which (2) must be minimized.

 

Noise & Data Modeling Considerations



Time Invariant noise: Noise is different for each radial position, but 
the same offset for each scan, and hence time independent.

 

Different Types of Noise - Systematic



Radially Invariant noise: Noise is different for each scan, but each 
radial position is offset by the same amount throughout the scan

 

Different Types of Noise - Systematic



Stochastic (random noise): Noise is different for each radial and 
time point and it is (hopefully) Gaussian in distribution:

 

Different Types of Noise - Stochastic





Tale of 2 noisy vectors

Noise of Scan 1

+

Noise of Scan 2

=

Noise *  2



  Optical system considerations

Intensity measurements record the intensity of light passing 
through one channel. Absorbance measurements record the 
intensity of light passing through one channel, then record the 
intensity of the light passing through the reference channel, and 
subtract it from the first channel. Each channel recording contains 
the (nearly) same amount of time invariant noise, but different 
amount of stochastic noise. Subtraction of time invariant noise will 
eliminate it:

   

Intensity vs. Absorbance

scan1 = signal 1  N s1  N ti

scan2 = signal 2  N s2  N ti

scan1 – scan2 = signal1 – signal2  N s1  N s2

N s1  N s2 ≈ N s1 2





Factors that affect Accuracy – Time-invariant Noise



How can we deal with uncertainty?
A Recipe for Optimal Resolution:

Our solution is affected by random noise, time-invariant 
noise, the available signal, and its ratio to the random 

noise.

Improve signal to noise by:
Obtain lots of high quality data
Exploit the entire dynamic range of the acquisition system
Reduce noise and only use a well-functioning instrument
Remove systematic noise from experimental data

Replace fitting parameters with experimentally determined values from 
separate experiments

Explore the parameter space with a grid method, then parsimoniously 
regularize solution with GA, and use Monte Carlo to explore 
confidence regions

Perform global fits for multiple experimental conditions to improve 
signal



Remember: 

you cannot get reliable answers if you start 
with low quality input data!

Summary:



Statistical Verification

Use Monte Carlo to determine the reliability of the fitted data:



Implementation of Monte Carlo Method

The Monte Carlo method is a stochastic approach that can be used to 
identify the effect noise has on the reliability of determined parameters. 
With the Monte Carlo approach the statistical confidence limits of each 
measured parameter can be determined.

Recipe for Monte Carlo:

Obtain a best-fit solution from model function fit and confirm that the 
residuals are random and without systematic deviation

Generate new synthetic Gaussian noise with the same quality as was 
observed in the original experiment and add it to the best-fit solution

Re-fit the solution

Repeat (2-4) at least 100 times and collect all parameter values

Calculate statistics from Monte Carlo distribution for each parameter



Implementation of Monte Carlo Method

Generation of synthetic noise:

Method 1 – use Bootstrapping: 

Permute a percentage of residuals. Take any residual, positive or 
negative, and place it elsewhere in the data. Assumption: The likelihood 
of a residual's magnitude is the same anywhere in the dataset.

Method 2 – generate Gaussian noise:

Run a 5-7 point Gaussian kernel over the residual vector from the best fit 
and use the Box-Müller algorithm to generate random new noise with the 
same quality at that position based on the variance obtained from the 5-
point kernel.



Implementation of Monte Carlo Method

Generation of synthetic Gaussian noise with Method 2:

Generation of Gaussian noise is preferred because the 
quality of the noise varies at different points in the cell and it 
also varies with absorbance (more absorbance = more noise).

Take the absolute value of the 
residual values from 5-7 points, 
and smooth them with a Gaussian 
kernel (most weight on the center 
point). The average residual value 
is fed into the Box – Müller function 
to generate a new random residual 
that has a Gaussian probability 
distribution with a mean of the 
average residual value.

If there is a lot of noise in some area of the scan, the new data will have 
noise locally equivalent to the original data. 



Implementation of Monte Carlo Method

Box – Müller function:

float box_muller(float m, float s)      /* normal random variate generator */
{                                       /* mean m, standard deviation s    */

float x1, x2, w = 2.0;
while (w >= 1.0)
{

x1 = 2.0 * ranf() - 1.0;
x2 = 2.0 * ranf() - 1.0;
w = x1 * x1 + x2 * x2;

}
w = sqrt((-2.0 * log(w)) / w);
return( m + x1 * w * s );

}

float ranf()
{

int N = 1;
float temp = 0.0;
temp = (((float) rand() / ((float) RAND_MAX + 1) * N));
return(temp);

}



Obtaining Confidence Intervals

Once a Monte Carlo analysis is completed, a frequency distribution of 
parameter values for each parameter is obtained, and statistics for the 
distribution can be calculated:

Molecular Weight

Maximum Value:             1.526728e+05
Minimum Value:             1.499355e+05
Mean Value:                1.512681e+05
Median Value:              1.513042e+05
Skew Value:                2.345094e-02
Kurtosis Value:            4.796727e-02
Lower Mode Limit:          1.513042e+05
Upper Mode Limit:          1.513589e+05
Mode Center:               1.513315e+05
95% Confidence Limits:     +6.445781e+02
                           -7.715156e+02
99% Confidence Limits:     +8.671094e+02
                           -9.940469e+02
Standard Deviation:        3.612517e+02
Standard Error:            3.572899e+00
Variance:                  1.305028e+05
Correlation Coefficient:   1.387418e-02
Gaussian Area:             5.592846e+05
95 % Confidence Interval:  1.505600e+05 (low),  1.519761e+05 (high)
99 % Confidence Interval:  1.503375e+05 (low),  1.521986e+05 (high)



Regularization:

Occam's Razor: The simplest solution describing the data is the 
preferred solution. Instead of regularizing the solution and 
introducing infinitely many solutes with different probability, we 
want to REDUCE the solution space to find the solution that has the 
smallest number of possible solutes. For probabilities of solutes 
inspect the GA evolution profile which provides MC statistics.



Solving the Least Squares Equation

Homework 1: For the dataset shown on the right 
calculate the equations for a and b for a straight 
line fit using Cramer's rule (y = c

1
 + c

2
x). Assume 

a standard deviation of 1 for each measurement. 
Show your work. Compare your answer by 
fitting with a plotting program. Show results.

c1 =
b1a22 − b2a12
a11a22−a12a21

, c2 =
b2a11 − b1a21
a11a22−a12 a21

 X    y   σ
_____________
 2 10.6   1
 4 12.1   1
 6 14.5   1
 8 20.8   1
10 17.3   1
12 24.7   1
14 29.1   1
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Homework assignment: For each of the following situations, rank the 
appropriateness of each fitting approach from best to worst or not applicable: non-
parametric, gradient descent, grid method, or stochastic, specify whether each 
model is linear or nonlinear in its fitting parameters, propose a function if non-
parametric, and justify your answer for your ranking.

1. Smoothing a set of noisy data with a recognizable wave pattern

2. Fitting parameters a and b from function:

3. Fitting parameters ai from function:

4. Fitting parameters ai from function:

5. Fitting parameters a, b and c from function:

6. Fitting parameters a1 - a8:

F (x ) = a0 + a1 log (a x ) + a2 sin (b−x2 ) + c

F  x = ∑
i=0

100

ai e
bi  x2−c2  , where bi =

i
100

F  x = a0  a1 log b x   a2 sin a3−x2   c

F  x  = log a x   sin bx2   c

F (x) = a1 log (a2x) +
a3 sin(√2a4 x

2
)

a7 x
3

+ a5e
(a6 x

2

2 )
+ a8


