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Reported by:
2)  absorbance ( Al  =  log {I0,l/Il}  =  el c l )

Measured by: single or double beam spectrophotometer

1)  percent transmission ( %Tl = 100 x Il/I0,l )

Absorption

monochromator detectorlight source cuvette holder
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Significance of deviations from the Beer-Lambert Law:

If nothing happens in a solution as a function of concentration of 

the component solutes, that is there are no concentration-

dependent interactions, then the OD should increase linearly with 

increases in concentration of the components (this requires that 

all solute components have proportional increases in 

concentration or that different components have equivalent 

extinction coefficients.  

Deviations mean interactions.  The change in absorbance versus 

concentration will follow the thermodynamics of the system, 

reflecting cooperativity, positive or negative, or lack thereof.
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Trp (W)                                   Tyr (Y)                                  Phe (F)

Aromatic Amino Acids
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Absorption Spectra of the Nucleic Acids
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Hasselbacher et, al., Biophys J 60, 
20 (1995)

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Tryptophan AnalogsTryptophan Analogs
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5-hydroxytryptophan            7-azatryptophan
Ross et al.,Topics in Fluorescence 
Spectroscopy 6, Lakowicz ed. 2000



Spectroscopy

Tryptophan AnalogsTryptophan Analogs

Ross et al., Meth Enzymol 278, 151 (1998) Ross et al., Meth Enzymol 278, 151 (1998) 
Ross et al., Proc Natl Acad Sci USA 89, 
12923 (1992) 
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Ross et al., Topics in Fluorescence 
Spectroscopy 6, 17 (2000) 

Tryptophan AnalogsTryptophan Analogs
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Why is this plot not linear for the entire 
range?

At some point the absorbance is so high 
that not sufficient light passes through to 
the detector, and linearity is no longer 
satisfied.

The absorbance at which an instrument 
becomes non-linear depends on the 
following factors:

1. Concentration of the analyte
2. Lamp intensity at the measured 

wavelength
3. Extinction coefficient of the analyte at 

measured wavelength
4. Sensitivity of detector at the measured 

wavelength

Relationship between
Absorbance and 

Concentration

For best accuracy, always measure between 0.1 – 1.0 OD
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• Identification of Chromophore(s) by Spectra

Are spectra from multiple chromophores in a macromolecule additive?

A(l,sample) = aA(l,a) + bA(l,b) + gA(l,c) + dA(l,d) + …..

LINCS: LINear Combination of Spectra

approximately linear in proteins

but not linear in DNA or RNA

• Investigate Interacting Systems by Difference Spectra
Quantification of Binding
Evaluation of Conformational Changes

most accurate range to obtain c:  between 15 and 65 %T 
   which is A between 0.2 and 0.8

• Concentration

Beer-Lambert Law (Beer’s Law):   Al  =  el c l

Laws and Shore, J. Biol Chem 254, 
2582 (1979)
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PRINCIPLES OF FLUORESCENCE SPECTROSCOPY

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006

Sir George Stokes
1819-1903

Born in County Sligo, Ireland, Stokes was 

the Lucasian Professor of Mathematics at 

Cambridge from 1849 until his death in 1903.

Some major contributions:

Fluid dynamics (Stokes’ Law)

Wave theory of light

Polarization of light

Fluorescence of minerals

Stokes’ line (Raman scatter)



Spectroscopy

Jabłonski Diagram
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006



Spectroscopy

Jabłonski Diagram
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Jabłonski Diagram
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Single Trp Residue in Cod Parvalbumin; 77 K
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Loss of Energy from Excited State back to Ground State

• Internal Conversion (IC; mainly through vibrational relaxation)

• Quenching: collisions with solvent, solutes, or groups of chromophore

• Intersystem Crossing (ISC)
phosphorescence from long-lived triplet state

• Förster Resonance Energy Transfer (FRET)

• Emission of a photon
fluorescence from lower energy than from initial Frank-Condon state; 
Stoke’s shift

• Excited-State Reactions
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• Bond Breaking (UV, x-ray)

• Bleaching

reactions with O2, etc.

photorecovery experiments

• Labeling Reactions

• Generation of New Emitters

proton transfer (A* ↔ B-* + H+)

           excimer formation (excited-state dimer: A*+ A ↔ A A*)

• Solvent (dipolar) Relaxation

           S1 → S1´ → →  S1´´ → → → S1´´´ → → → → …..  

Excited-State Reactions
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τ = 1 / (Kf + Σ Knr) excited-state lifetime

ϕ = Kf / (Kf + Σ Knr) excited-state quantum yield

Fλ =  ϕ Aλ  = ϕ el c l fluorescence intensity

Lifetime and quantum yield

Σ Knr = IC + ISC + e- transfer + ….. other dynamic processes
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Raman scatter &
   Trp emission
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006

Primary and secondary inner filter errors:

F
corr

 = F
obs

 log ((OD
ex

 + OD
em

) /2) 
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006

              Geometry considerations:

most common is center focus (upper left and 
upper middle)

front-face illumination, used for optically thick 
samples, should be either at 30° or 60°, not 45°. 
Excitation reflection angle makes this obvious. 
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006

Valeur and Berbaran-Santos, 
Molecular Fluorescence,
2nd Ed., 2012
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Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006

Excited-State Reactions: Dipolar Relaxation
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Excited-State Reactions: Dipolar Relaxation

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Absorption and Emission Transition Dipole Moments
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Absorption and Emission Transition Dipole Moments
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Absorption and Emission Transition Dipole Moments
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Anisotropy (Jabłonski, 1960):

r = (IV – IH)/(IV – 2 IH) = (IV - IH)/Itotal)

depends on the angle, , between absorption and emission transition moments
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Absorption and Emission Transition Dipole Moments
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

    if  =   0 (parallel),           then r0 =  0.4

or if  = 90 (perpendicular), then r0 = -0.2

with random molecular orientation             r0 =  (3cos2q -1)/5  

Anisotropy (Jabłonski, 1960):

r = (IV - IH)/Itotal )

depends on the angle, , between absorption and emission transition moments

Principle of Photoselection (Albrecht, 1961)

Andreas Albrecht, 1927-2002
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N

1La

1Lb

permanent dipole
moment in S0 of
~ 2 debye

Determination of r0 as a function of excitation wavelength

at a constant em

scan ex for all 4 sets of polarizer angles

calculate and plot r0 vs ex 

prevent depolarizing motions

Information obtained

r0 for different electronic transitions 

thus calculate  between abs. and em. dipole moments 

as in indole, find ‘hidden’ transitions  

see Figs. 10.6, 10.7,  10.29 in Lakowicz (2nd ed.) 

for indole spectrum, see Fig. 10.8 in Lakowicz (2nd ed.) 

Principle Polarization Spectrum
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Principle Polarization Spectrum

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Anisotropy and Photoselection

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Anisotropy and Photoselection

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Anisotropy and Photoselection
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Anisotropy and Photoselection

Badea and Brand, Meth Enzymol 
61, 378 (1979)

Itotal = Ix + Iy + Iz = Ix + 2 Iy

Iviewed = Ix cos2 θ + Iy cos2 (90° - θ) 

Iviewed will be proportional to Itotal if 

[cos2 (90° - θ)]/(cos2 θ) = tan2 θ = 2 

then θ = 54.7°

Magic Angle conditions
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Ftotal = FV + 2 FH

Ftotal = ∑fi = ∑ϕi ai  = ∑ϕi ei  ci l

FRtotal = ∑fi ri  = ∑ϕi ai ri  leads to the non-addition law:

Rtotal ≠ ∑ri (except under special circumstances)

Anisotropy and Fluorescence

Interactions (binding) and addition laws
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Theodor Förster
1910-1974

J. Robert Oppenheimer
1904-19671870-1942

Francis Perrin
1901-1992

Jean B. Perrin

Held, BioTek.com, 2005
Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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Resonance Energy Transfer

Lakowicz, Principles Fluorescence 
Spectroscopy 3rd Ed., 2006
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The orientation factor, k2 can be calculated from the projections of the 

9 combinations of donor and acceptor axes (draw projection of donor 

axes on acceptor axes): 

1 orientation where k2 = 4 

2 orientations where k2 = 1 

6 orientations where k2 = 0 

3 of the 9 combinations contribute to FRET: åk2 = (1 x 4) + (2 x 1) = 6

6 of 9 total combinations do not contribute to FRET: åk2 = 0 

So the average k2 for all combinations is 6/9 = 2/3

Resonance Energy Transfer
The orientation factor, k2
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Water Packs Better Against a Protein SurfaceWater Packs Better Against a Protein Surface
Than Another Protein (or DNA) DoesThan Another Protein (or DNA) Does 
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Rice, P.A., et al, (1996) Cell 87: 1295-1306Rice, P.A., et al, (1996) Cell 87: 1295-1306

IHF : sequence-specific interaction

Senear, et al, (2007) Nucleic Acid Res 35: 1761Senear, et al, (2007) Nucleic Acid Res 35: 1761
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