

Lakowicz, Principles Fluorescence Spectroscopy 3rd Ed., 2006

Anisotropy and Magic Angle

FIG. 15. "Magic" angle cones. Viewing the emission originating from O along the lines BO or AO eliminates the polarization related artifacts for any kind of excitation. See text for details.

Magic Angle conditions

 $I_{total} = I_x + I_y + I_z = I_x + 2 I_y$ $I_{viewed} = I_x \cos^2 \theta + I_y \cos^2 (90^\circ - \theta)$ $I_{viewed} \text{ will be proportional to } I_{total} \text{ if}$ $[\cos^2 (90^\circ - \theta)]/(\cos^2 \theta) = \tan^2 \theta = 2$ $\text{then} \qquad \theta = 54.7^\circ$

Badea and Brand, Meth Enzymol 61, 378 (1979)

Anisotropy and Fluorescence Interactions (binding) and addition laws

$$F_{\text{total}} = F_{V} + 2 F_{H}$$
$$F_{\text{total}} = \sum f_{i} = \sum \varphi_{i} a_{i} = \sum \varphi_{i} \varepsilon_{i} c_{i} I$$

 $FR_{total} = \sum f_i r_i = \sum \varphi_i a_i r_i \text{ leads to the non-addition law:}$ $R_{total} \neq \sum r_i \text{ (except under special circumstances)}$

Molecular Processes & Dynamics

Time Scales and Techniques

BioSpectroscopy Lab UM

Fluorescence Microscope

Ultra-Fast Lasers

Chelle Terwilliger, UM

Nanodisc Project (NSF) Ross & Bowler, UM

Surface-tethered Nanodiscs Ayesha Sharmin, UM

What is Time-Correlated Single-Photon Counting?

PicoQuant, Inc.

membrane receptor-dependent G-protein regulation

GDP-BODIPY bound state: $<\tau> = 3.1$ ns

 $I(t) = \sum \alpha_i \exp(-t/\tau_i)$ $<\tau > = \sum \alpha_i \tau_i^2 / \sum \alpha_i \tau_i$

Celestine Thomas, Sandy Ross

Probing Conformational States Anisotropy Decay

 $r(t) = \sum \beta_j \exp(-t \neq_j)$ $j = 1 \text{ to } 5, \ \sum \beta_i = r_0$

In proteins, with fluorescence probes attached, for example to cys, analysis of the anisotropy decay usually yields two ϕ_j terms. The long correlation time reflects global motion. The short correlation time reflects segmental motion(s). in sTF alone, $\phi_{long} \sim 19$ ns and $\phi_{short} \sim 1-2$ ns. The amount of segmental motion decreases on formation of the complex with factor VIIa.

Minnazo, A, et al, (2009) Biophys J 96, 681

`

Optics to Observe Freely Diffusing Molecules

GDP-BODIPY bound state: $<\tau> = 3.1$ ns

 $I(t) = \sum \alpha_i \exp(-t/\tau_i)$ $<\tau > = \sum \alpha_i \tau_i^2 / \sum \alpha_i \tau_i$

Celestine Thomas, Sandy Ross

Celestine Thomas, Sandy Ross

Harmen's MicroTime project

Harmen's MicroTime project

FCS	Variant	τ₀(µs)	<i>τ</i> τ (µs)	<i>D</i> (μm²/s)	<i>R</i> ⊬(nm)
	Monomer	0.061 ± 0.010	12 ± 9.1	125 ± 21	1.80 ± 0.25
	Monomer & CL ND	0.480 ± 0.031	2.7 ± 1.9	33 ± 2.6	6.83 ± 0.51
	Dimer	0.083 ± 0.008	25 ± 5.2	92 ± 8.2	2.39 ± 0.19
	Dimer & CL ND	0.440 ± 0.23	2.7 ± 2.1	22 ± 2.4	10.05 ± 0.9

tropy	Variant	ariant Intensity-Weighted Correlation Lifetime (ns) time (ns)		<i>R</i> ⊬(nm)	
ISO	Monomer	3.27 ± 0.31	6.37 ± 0.16	1.83 ± 0.05	
An	Dimer	4.55 ± 0.04	12.7 ± 0.17	2.31 ± 0.04	

Kinetic Binding Data from Fluorescent Experiments

		рН 7.4		pH 8.0	
		K _d (μΜ)	-∆G (kcal/mol)	K _d (μΜ)	-∆G (kcal/mol)
Monomor	Anisotropy	9.0 ± 0.2	11.5	25.0 ± 0.6	9.0
Monomer	FCS	9.2 ± 0.3	11.4	26.1 ± 1.3	8.9
Dimor	Anisotropy	23.0 ± 1.5	9.2	134.5 ± 7.1	4.9
Dimer	FCS	22.1 ± 1.2	9.5	122.8 ± 6.0	5.2

Resonance Energy Transfer

Resonance Energy Transfer

The orientation factor, κ^2

The orientation factor, κ^2 can be calculated from the projections of the 9 combinations of donor and acceptor axes (draw projection of donor axes on acceptor axes):

- 1 orientation where $\kappa^2 = 4$
- 2 orientations where $\kappa^2 = 1$
- 6 orientations where $k^2 = 0$

3 of the 9 combinations contribute to FRET: $\sum \kappa^2 = (1 \times 4) + (2 \times 1) = 6$

6 of 9 total combinations do not contribute to FRET: $\sum \kappa^2 = 0$

So the average κ^2 for all combinations is 6/9 = 2/3

FRET in freely-diffusing single molecules

Roy, Hohng & Ha, A practical guide to single-molecule FRET Nature Methods (2008)

1 ms binning and 25 (minimum) photons per event

3-Gaussian Model for Two-State Conformational Equilibria

Gopich, Szabo J. Phys. Chem. B 111:12925 (2007)

Linda's 880 project – FLIM/FRET

FLIM-FRET between CFP/YFP-tagged NMDA receptor subunits

