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System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics
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We study the system-size dependence of translational diffusion coefficients and viscosities in molecular
dynamics simulations under periodic boundary conditions. Simulations of water under ambient conditions
and a Lennard-Jones (LJ) fluid show that the diffusion coefficients increase strongly as the system size increases.
We test a simple analytic correction for the system-size effects that is based on hydrodynamic arguments.
This correction scales a$3, whereN is the number of particles. For a cubic simulation box of lerigth

the diffusion coefficient corrected for system-size effect®js= Dpgc + 2.83729KsT/(6177L), whereDpgc

is the diffusion coefficient calculated in the simulatiég the Boltzmann constant, the absolute temperature,

andy the shear viscosity of the solvent. For water, LJ fluids, and hard-sphere fluids, this correction quantitatively
accounts for the system-size dependence of the calculated self-diffusion coefficients. In contrast to diffusion
coefficients, the shear viscosities of water and the LJ fluid show no significant system-size dependences.

I. Introduction symmetry by applying the hydrodynamic boundary conditions
on the Wigner-Seitz sphere, rather than the simulation égll.
To avoid possible confusion, we emphasize at the outset that
the hydrodynamic correction developed her@ds concerned
with so-called hydrodynamic long-time tails in, e.g., the patrticle
velocity autocorrelation functiof?24

The paper is outlined as follows. We first derive the Oseen
tensord+ for finite periodic and infinite nonperiodic systems.
From their difference, we estimate a hydrodynamic self-
interaction. Following the KirkwoogRiseman theory of poly-
mer diffusion2> we relate the periodicity-induced hydro-
dynamic self-interaction to the effect of periodic boundary
conditions on diffusion coefficients. This results in an analytic
correction formula for diffusion coefficients that we test for
water at ambient conditions, a Lennard-Jones (LJ) fluid at high
'temperature and density, and a hard-sphere fluid. We also
calculate the viscosity of water and of the LJ fluid as a function
of system size.

Long-range interactions can lead to significant dependences
on the system size in computer simulations of condensed matte
under periodic boundary conditioh&ffects from the Coulom-
bic 1f interactions have been particularly well-characterized
(see, e.g., ref 2). Hydrodynamics can also lead to effective long-
range interactions, as witnessed, for instance, by thedday
of the Oseen tensd Such hydrodynamic interactions can
indeed cause significant finite-size effects, as shown byvizg
and Kremet® for the diffusion coefficients of polymers. For
the diffusion of small single-stranded ribonucleic acid molecules
(RNA) in water, we recently observed that the calculated
diffusion coefficients deviate from the extrapolated infinite-
system limit by factors of 23 for typical system sizeSHere,
we show that, even for relatively small molecules such as water
the apparent self-diffusion coefficients depend significantly on
system size. For a system ef2000 water molecules in a
periodically replicated cubic simulation cell, we find the

diffusion coefficient to be underestimated %%0%. Correcting IIl. Theory

for such systematic errors is particularly important in compari- o . . . .

sons of simulations to experimeftand if transport properties Diffusion Coefficient. To derive an analytic correction for
are used to assess and fit interaction potentials. system-size effects on the diffusion coefficient, we use a simple

hydrodynamic model of a particle surrounded by a solvent of
viscosity # in a periodically replicated simulation box. The
diffusion of this particle will be affected by hydrodynamic
interactions not only with the solvent in the immediate sur-
rounding, but also with the periodic images of the particle itself
and the solvent. In an infinite nonperiodic system, hydrodynamic
interactions between particles can be approximated by the Oseen
tensor® Here, we use an Oseen tensor modified for periodic
boundary conditions. From the difference between the Oseen
tensor in the finite periodic and infinite nonperiodic systems,
we will estimate the hydrodynamic self-interactions induced
specifically by the periodic boundary conditions. The Kirk-
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gerhard.hummer@nih.gov. coefficient. Our derivation is closely related to that ofriveg

We use a simple hydrodynamic model to obtain an analytic
expression for the system-size dependence of the diffusion
coefficient. The same expression was obtained previously by
Dunweg and Kremet,using a closely related derivation. The
correction is analogous to that developed earlier for electrostatic
self-interactions in ion-solvation free energfés!® The hy-
drodynamic correction builds on earlier work by Hasimoto on
the viscous flow past lattices of sphefeand by Beenakkéf
on an Ewald summatiéf of the Rotne-Prager hydrodynamic
mobility tensort® A related hydrodynamic correction for finite-
size effects was discussed by FusRfkivho imposed spherical
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and Kremef which is built on an approximate Fourier
representation of the pair diffusion tengér.

Yeh and Hummer

temperature. In the finite periodic system, we correct the
mobility for hydrodynamic self-interactions. The resulting

To construct the Oseen tensor for a finite periodic system, correction is given by the difference of the hydrodynamic self-

we adapt a derivation for an infinite nonperiodic systehat
was given by Stockmay®r and attributed to R. Zwanzig.

interactions in the finite periodic and infinite nonperiodic
systemsTpsc — To. The diffusion tensor modified for periodic-

Consider an incompressible fluid perturbed by a point force ity, Dpgg, is then given by

acting at the center of a periodically replicated cell of volume

V. The perturbation of the velocity fielg(r) caused by the point

force is assumed to satisfy the Stokes equation (i.e., the

linearized Navier-Stokes equation for an incompressible flui#),
1Vu() = Vp) ~[o(r) ~ {F &)

wherep is the pressurey = d/or, and p(r) — 1N]F is the
point-force perturbation, witld(r) as thed function. The 1¥/

Dpgc= Dol + kg T Liﬂ?)[TPBc(r) — To(] 9

This result is formally equivalent to eq 33 of 'Bweg and
Kremer® We note that eq 9 is also obtained if we use the
Oseen-Burgers approximatidi° to estimate the difference
in the diffusion coefficients of a small sphere (radjus— 0)
in a finite periodic and an infinite nonperiodic system.

From eq 9, we obtain thepparentscalar diffusion coefficient

term ensures that the net force on the cell is zero, such thatppg. by taking the trace:

Newton’s third law is satisfied. For an incompressible fluid with

V-v = 0, taking the divergence of eq 1 leads to
v — F-V[é(r) = \—1/] ~0 @

We transform these equations into Fourier space, suchuthat

= [v v(r) exp(k-r) dr and o(r) = V152 exp(iker). The
integral extends over the simulation c¥|landk is a vector of

1
Dpgc= éTr(DPBa =
kg T

lim
6or1r—0
k=0

A exp(—iker) 1
——1 (10)
KV Ir

Dy +

the reciprocal lattice of simulation cells. For a cubic lattice of [N the lattice sum, we recognize the Ewald potential of

lengthL, those vectors are given ty= 27zL~Y(ly, Iy, 1), where
Iy, ly, andl; are integers.
In Fourier space, eq 1 becomes
Ukzi’k = ikp + (1 — 6 )F ©)
wheredx = 1 for k = 0 anddx = 0 otherwise. For eq 2, we
obtain

kzﬁkz i(1—opk-F (4)
Combination of egs 3 and 4 results in
1-0f, Kk
= 1-—JF 5
S ( kz) ©

with 1 being the 3x 3 unity matrix. The Oseen mobility tensor
for a periodic system, which is defined by the relation

v(r) = Tpgdr)-F (6)
is then given by
exp(iker) kk
Teedl) = z— 1- _) (7)
k=k0 77k2V K2

electrostatic§~32 In particular, the limit of the term in square
brackets is identical to the self-interaction of a point charge in
a Wigner lattice®*

Dpgc= Dy +
ke T 20 erfc(an) Age ¥ 4 an
—-— -— 1
6. 1/2 n 2
7l 7 n¢n 0 k=0 k2V V(l

where the first sum is over the lattice vectorgexcluding the
origin), anda. is an arbitrary convergence factar ¢& 0). For
a cubic simulation cell of length, the lattice vectors are =

L(lx, ly, 1), wherely, Iy, andl, are integers. This results in

ke TE
Dpgc= Do — 6L (12)
with £ ~ 2.837297.0.16.:34.35The same expression was obtained
previously by Diiweg and Kremef.For noncubic unit cells,
the Ewald summation can be performed numerically, and values
for the constang have been given, for instance, by Hasim¥to.
Interestingly, note that, as in electrostafieshe dominant
contribution to the correctio§ comes from the compensating
background in the minimum-image cell (2.38 versus 2.837 for
the complete cubic lattice sum). The F/V” background force

where the sum extends over the reciprocal lattice vectors, density in eq 1, which reflects the requirement of zero net force

excludingk = 0. In an infinite nonperiodic system, the Oseen (i-€., momentum conservation, analogous to charge neutrality
tensor is given b¥/ in electrostatics), is thus essential and accounts for much of the

system-size dependence of diffusion coefficients.

T(r) = i(l n E) Equation 12 will be particularly useful to correct the observed
0 8mnr r2 diffusion coefficients of solutes at “infinite” dilution in a well-
characterized solvent of known viscosify To obtainDo, one

To connect the Oseen mobility tensorg(r) and Tpgd(r) to simply addsksT&/(6z717L) to the calculated apparent diffusion

particle diffusion coefficients, we adapt the KirkweeRiseman

theory of polymer diffusiorf:2> In the infinite nonperiodic

system, the particle mobility tensor is given bigT)'Dol,

coefficientDpge If the viscosity is not known, apparent diffusion
coefficientsDpgc should be calculated for different system sizes.
whereDy is the diffusion coefficient of the particle in an infinite
system, kg the Boltzmann constant, and the absolute

8)

Do can then be estimated from tlyentercept of a linear fit of
Dpgc, With respect to 1/, which corresponds to an extrapolation
to infinite system size.
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Alternatively, one can also obtain an approximate estimate TABLE 1: Simulation Results for TIP3P Water under
of the system-size correction by using the StokEmstein Ambient Conditions (T = 298 K, p = 33.00 nnr3)
relation for the diffusion coefficient with either stick or slip number

boundary condition&? of water  shear viscosity, lefUSIOPSCOfoICIent
molecules, 7 [107%kg pressure, [1075 cn¥/s]
ke T ik N m-1s] p [bar] Dped® D¢

67nR (stick) 128 3.00009) —26.0(1.5) 4.884(32) 6.16(7)

o~ (13) 256 3.06(04) —29(25) 5.123(27) 6.14(6)
ke T . 512 3.14(09) 3.5(1.3) 5.315(14)  6.12(4)
TR (slip) 1024 3.15(07) 10.8(1.0) 5.466(11) 6.11(3)
n 2048 3.06(10) 9.3(0.8) 5.590(13)  6.10(3)

whereR is the hydrodynamic radius of the particle. Equations 2The numbers in parentheses indicate the statistical errors of the
12 and 13 can be solved self-consistently to give last digits (one standard deviation of the mean estimated from block

averages)® Diffusion coefficient obtained from the simulations through

ER\-1 eq 17.¢ Diffusion coefficients corrected for system-size dependences,
( - TR) (stick) using eq 12. For the corrections, we used a constant shear viscosity of
= (3.08+ 0.1) x 104 kg m* s
Do~ Dpgc X 2ER-L (14) = ) J
( 3 (slip) 13). However, no significant system-size dependence was

observed in computer simulations of LJ fluit®. To explore
Equation 14 is an approximate correction formula for diffusion the system-size dependence, we calculate the shear viscosity

coefficients that does not require the solvent viscogiés input. 7, using the GreenKubo relation!
Instead, it requires an estimate of the hydrodynamic raRius
and the choice of stick or slip boundary conditions. _V
We note that the result for the difference in the trace of the g kBTj;) (3P, (1)OP,,(O)Klt (16)

periodic and nonperiodic Oseen tensors (egs 7 and 8) is already

contained in eq 4.8 of the work of HasimdfoMoreover,  here the integrand is the autocorrelation functiorBy(t),
Hasimoto’s solution of the Stokes equation under periodic which is the deviation of an off-diagonal element of the
boundary conditions provides additional correction terms to eq jnstantaneous pressure tensor from the average (zero in an
12 that are dependent on the particle size. From Hasimoto’s edgjnfinitely long run). By symmetry, equivalent expressions are
5.25, we obtain the next order of the system-size correction, in gptained if we replacéPy, in eq 16 with other off-diagonal
terms of the radiuR of a Spherlcal pal’tlcle in a cubic simulation elementS, and with differences between diagona| elements such

cell: as 0P« — OPyy,. The latter follows from a rotation of the
kT 2 laboratory reference fran¥.0One of the difficulties in using
—p.__8 [ 47 eq 16 results from possible long-time tails in the correlation
Dpgc= Do 3 2 (15) :
6nL 3L functions?2-24
For allR < L/2, the particle-size-dependeR¥/LS term reduces IIl. Simulations of Water

the system-size correction of eq 12 by a relatively small amount.

Hasimotd® also explicitly comments on the need to include
a compensating background in the Stokes equation (heve, 1/
in eq 1), which, in the case of flow past a lattice of spheres,
results from the mean pressure gradient over a cell. This
eliminates the divergence problem noted by Burd@we note
further that Beenakker'$ Ewald summation of the Rotre
Prager tensé? also leads to eq 12, with the trace of the
correction to the Oseen tensor being zero. Beenakker’s analysi
did not explicitly consider the ¥background term that results ) . .
from Newton’s third law, which is, however, implicitly added g; b-:—:ri ;(r)gsséirr]ctespallttr:?alepg)%rascl:i)gr?ftiri%o(g‘ingI\sfienrslurl]:t?c;s <
:;) LZZ(?JQ%X\;I% divergent lattice sums when Ewald summation 20 ns N < 512), 15 ns I = 1024), and 10 nsN = 2048),

Finally, we note that the derivation of the hydrodynamic self- Slrgull?g%n rgsults a:c:f _I|sted n Tabl? 1|' df he sl f
interaction is largely analogous to that of ionic self-interactions __S€!I-diffusion coefficients were calculated from the slope o
in electrostatic®-15 Corresponding to the W/correction in the mean-square displacement averaged over the trajectories of

the source term of eq 1, the divergence of the electrostatic lattice!Ndividual particles,
sum for a Wigner crystal is removed by a neutralizing
background charge (see, e.g., refs-3B). Just as in electrostat-
ics, the lattice sums in eqs 7 and 10 are only conditionally
convergent and should be evaluated using summation over
spherical shell3? which corresponds to Ewald summation. This wherer(t) denotes particle trajectories that are continuous in
leads to eq 11. Cartesian space. After a brief initial period 1 ps for water
Viscosity. The preceding analysis implicitly assumes that the under ambient conditions), the mean-square displacement grows
shear viscosityy of the fluid is independent of system size. linearly with time within statistical uncertainties (Figure 1), and
One might expect that the apparent viscosity of a system a straight-line fit gives us an estimate of the diffusion coefficient.
simulated with periodic boundary conditions also suffers from  Figure 2 shows the apparent diffusion coefficients of water
system-size effects, because of the Stelgisstein relation (eq from the simulations, as a function of the inverse box size (1/

To test the system-size correction in eq 12, we calculate the
self-diffusion coefficientsDpgc of TIP3P watet” in cubic
simulation cells withN = 128, 256, 512, 1024, and 2048 water
molecules. In the simulations, we use the Sander module of
AMBER 6.0 (University of California at San Francisco) with
particle-mesh Ewald summation for the long-range electrostatic
interactions’®39 The equations of motion are integrated with a
Jime step of 0.002 ps. A temperature of 298 K is maintained
with the Berendsen thermosttusing a relaxation time of 1

. 2
Do iim & FO = O
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Figure 1. Mean-square displacement of TIP3P water as a function of tlps]
time t. The lines are folN = 128, 256, 512, 1024, and 2048 water  Figure 3. Normalized shearstress autocorrelation function in the
molecules (bottom to top). integrand of eq 16. Results are shownfbr= 128-2048 TIP3P water
molecules. The inset shows the autocorrelation function on a logarithmic
N scale.
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Figure 2. Diffusion coefficient of TIP3P water as a function of the 0 01 02 03 04 05 06 07
inverse box length 1/ (bottom scale) forN = 128-2048 water 1/L [nm™]

molecules (top scale). Circles show uncorrected resbiisd from

simulations, with error bars estimated from block averages. Squares

show the diffusion coefficientd)y) corrected for finite-size effects with

eq 12, as indicated by the arrow fdr= 256. The solid line is a straight-

line fit of the uncorrected diffusion coefficienByscto 1L. The dashed . . . . .

line is a fit of the corrected diffusion coefficienB to a constant. potassium ions (with a single charge) and a small RNA (with

two charges) in water, scaling the correction factor of eq 12 by

o . 0.88 and 0.76, respectively, accounted more accurately for the

L_). As |nd|cat(_ed b_y the different s!opes of the mean-square gpserved system-size dependences. However, the mag-

displacement in Figure 1 and predicted by the hydrodynamic njyde of “dielectric friction” effects is still a matter of debdfe.

theory, we find that the diffusion coefficieriDpsc depends We also calculated the shear viscosity of TIP3P water under

linearly on 1L. A stra|ght-I|r51e fit extrapolates to a diffusion 4 hient conditions, as a function of system size. Figure 3 shows

coefficientDo = 6.05 x 107> cn¥/s for an infinite system of b4 normalized sheastress autocorrelation function entering

TIP3P water at 298 K and ambient pressure. If we apply €4 12 ¢4 16 for the simulations witN = 128-2048 water molecules.

to correct the observed diffusion coefficients with a viscosity \ye qo not see any significant system-size dependences in the
— 4 —1 g1

of 7 = (3.08+ 0.1) x 10"* kg m™* s* (as calculated below), 5 15correlation functions, which is consistent with an essentially

the resulting diffusion coefficients are independent of system system-size independent bulk pressure (see Table 1 and ref 42).

size, within one estimated standard deviation of the error. \jq-eover within the accuracy of the data, the correlation

_ 5 . ’ ’

However, the average value @f = 6.11 x 10°° cn¥/s is functions seem to decay exponentially at timeg ef 0.3 ps.

shghtl)sl larger than that obtained from a straight-line Q.06 With the assumption of exponential decays, we evaluate the

x 10°° cns). integral in eq 16 by summation up to= 0.4 ps, followed by

The srlnall overcorrection of eq f12'|s within the estimated e qration of the exponential fit at longer times. From that, we
statistical errors. It may be caused, for instance, by contributions obtain the viscosities shown in Figure 4 as a function af 1/

from long-range electrostatic interactions, as would follow from Based on the results shown in Figures 3 and 4, we conclude
a simple argument. For charged and dipolar fluids, a finité 5 there is no strong system-size dependence in the viscosity
periodic system is expected to be less polarized overall than anyat, “and that the value of the viscosity of TIP3P water at 298

infinite nonperiodic system, because of the periodic boundary \ 4 4 density of 33.00 nr is (3.08+ 0.1) x 1074 kg m-*

conditions imposed on the polarization. The instantaneous -1 Essentially system-size independent viscosities of water

pola_rilzation effer::ti_vely “trap_s” indivi_o_lual di|cr>]olar or chargek?l . were also obtained by He$sand our viscosity value agrees
pa”'.f.eil”eaﬁ their rﬁ.SpeC“"e positions, 1 “Sh rEthC'”g t" €I well with that for a slightly modified TIP3P water model, as
mobility.** Following this argument, we expect that the smaller  50jateq by Feller et &P at 293 K using an Einstein relation.

overall polarization in a finite periodic system, compared {0 an |, particylar, the ratio of experimental and TIP3P viscosities is
infinite system, would increase the apparent mobility. In turn, 5 g'in poth cases.

this relative mobility increase would result in a smaller
correction factor for the system-size dependencBwgic than

that expected from hydrodynamics alone. This is consistent with
the results shown here for water, which is a polar molecule. In this section, we study diffusion in Lennard-Jones (LJ) and
Consistent with this electrostatic explanation, we earlier found hard-sphere fluids to eliminate the possible influence of long-
an even larger effect for the diffusion of charged partié¢lEsr range electrostatic interactions. Specifically, we have tested the

Figure 4. Shear viscosityr{) of TIP3P water as a function of the
inverse box length 1/ (bottom scale) forN = 128-2048 water
molecules (top scale).

IV. Lennard-Jones and Hard-Sphere Fluids
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TABLE 2: Simulation Results for the Lennard-Jones (LJ) N

Fluid at a Reduced Density ofpe® = 0.7 1000 512 216125 64 27
average 1.34 — ‘ ‘
temperature in e . —
particle constant-energy  shear Diffusion Colt/affluent £ a2 +
number,  simulations, viscosity, [o(e/m)*4 A i ; { ) [
N keT [e] 1 [0%(me) ] Desc® Do° & T ! T
8 2.749 2.248(700) 0.1873(13) 0.3276(23) = 13
27 2.754 1.305(016)  0.2250(09) 0.3185(16)
64 2.746 1.301(011)  0.2486(06) 0.3187(11) 1.8
125 2.749 1.322(008) 0.2615(10) 0.3176(14) 0 0.1 0.2 0.3
216 2.749 1.309(013)  0.2729(07) 0.3196(10) ol
512 2.744 1.315(008)  0.2804(08) 0.3155(10) .. . .
1000 5753 1.311(011) 0.2899(13) 0.3180(15) Figure 6. System-size dependence of the shear viscositf a LJ

fluid at a reduced temperature kfT/e = 2.75 and a reduced density
2The numbers in parentheses indicate the statistical errors of the of po® = 0.7.
last digits (one standard deviation of the mean estimated from block

averages)® Diffusion coefficient obtained from the simulations through 100 1000 ——
eq 17.¢ Diffusion coefficients corrected for system-size dependences, 512 — ——
using eq 12. For the corrections, we used a constant shear viscosity of 4 216
7 = (1.31+ 0.01) 0%(me) 2, 5 10
2
N £ 102
1000 216 64 27 8 o
0.35 s : o
I 0.3 ]
5 107 , , :
% 0.25 A 0 0.1 0.2 0.3 0.4
= t [Gm1/2/£1/2]
02 Figure 7. Normalized shearstress autocorrelation function of a LJ
fluid at a reduced temperature kfT/e = 2.75 and a reduced density

0 0.1 0.2 0.3

o/l
Figure 5. System-size dependence of the self-diffusion coefficient of
a Lennard-Jones (LJ) fluid (in units af(e/m)*) at a reduced
temperature oksT/e = 2.75 and a reduced density @* = 0.7. Error

0.4 0.5

of po® = 0.7. Results are shown for different numbers of particles
betweenN = 27 andN = 1000.

of larger system sizesN(= 27) is less than two estimated
standard deviations of the statistical error. For the smallest

bars correspond to one standard deviation estimated from block Systems, a slight overestimate of the diffusion coefficients after

averages. Circles show uncorrected resulissf) from simulations,
whereas squares show the diffusion coefficiebg ¢orrected for finite-
size effects with eq 12, as indicated by the arrow for= 27. The
solid line is a straight-line fit of the uncorrected diffusion coefficients
Dpgc to 1L (for N = 27), where as the dashed line is a fit of the
corrected diffusion coefficient®, to a constantN > 27). The triangle
shows theN = 8 diffusion coefficient corrected with eq 15.

system-size correction for the diffusion coefficient of a LJ fluid
at a reduced temperaturelefT/e = 2.75 and a reduced density
of po® = 0.7, wherec ando are the well depth and intersection
with the zero-axis of the LJ potential, respectively. The
simulations were performed with the velocity Verlet algorithm
at constant energy and volume, with a time step of 0.001 in
reduced units of timeg(nVe)*?), except forN = 512 and 1000,
where we used a time step of 0.005. The parammat@presents

correction with eq 12 is expected from the particle-size-
dependent term in eq 15. If we assuRe= /2 for theR? term
in eq 15, theN = 8 result is consistent with the corrected
diffusion coefficients for larger system sizes (see Figure 5). This
agreement is likely fortuitous, considering the small system size.
However, we do note that similar agreement down to the
smallest system sizes was obtained for system-size corrections
of electrostatic solvation effectd%1433Diinweg and Kremér
also studied the system-size dependence of the self-diffusion
coefficient of a fluid with purely repulsive truncated LJ
interactions at a higher density and lower temperature. They
found more scatter in the plot &pgc versus 1L, and a slope
that is in good agreement with eq 12.

As for water, we also examined the system-size dependence
of the shear viscosity. Figure 6 shows the viscosity of the LJ

the particle mass. Results are summarized in Table 2. In thefluid as a function of 1.. We do not find any significant system-

simulations, we use the full LJ potential, shifted to zero at a
cutoff distance of/2. In an earlier study by Holian and Evaifs,

size dependence in the viscosity valuesNoe 27. A similar
conclusion was reached previously by Holian and E¥afts

a LJ fluid at the same temperature and density was studied, butthe truncated LJ fluid, and by Dweg and Kremérfor a LJ

with a potential truncated smoothly atl.745.

Figure 5 shows the resulting diffusion coefficients as a
function of 1L. ForN = 27 particles, the diffusion coefficient
scales as 1/ as predicted by the hydrodynamic theory. This
1/L scaling was also observed for hard sphéPdtwe use the
viscosity of (1.31+ 0.02) 63(me) Y2 obtained from the data in
Figure 6 and Table 2, the diffusion coefficients corrected with

fluid at a lower temperature. The viscosity results in Figure 6
and Table 2 were obtained by assuming an exponential decay
of the stress autocorrelation functions beyond a time of 0.2
o(m/e)V2 (see Figure 7). We also fitted the long-time tails to an
algebraict™1°> decay. That increased the viscosity froni.31

to ~1.40%(me)~Y2. A possible weak dependence on system size
was masked by the substantially larger statistical errors of the

eq 12 are independent of system size and are fully consistentviscosities obtained with corrections for algebraic long-time tails.

with the value obtained by extrapolating a linear fit Dfgc
(with variable slope and intercept) to infinite system size. (1/
— 0). Even for a very small system & = 8 patrticles, the
deviation of the corrected diffusion coefficient from the average

Finally, we have reanalyzed simulation data of Sigurgeirsson
and Heyes for hard-sphere fluitfs.Figure 8 shows the
dependence of the diffusion coefficiddbgc on the inverse box
length 1L at a packing fraction of = 0.35, corresponding to
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Figure 8. System-size dependence of the self-diffusion coefficient of
a hard-sphere fluid at a packing fraction§%# 0.35 corresponding to

a particle density gbo® ~ 0.66845. Circles show uncorrected simulation
results Dpsc) from ref 46. Squares show the diffusion coefficierids)(
corrected for finite-size effects with eq 12, as indicated by the vertical
arrow. The solid line is a straight-line fit of the uncorrected diffusion
coefficientsDpgc to 1L, whereas the dashed line is the average of the
corrected diffusion coefficient.

a particle density opo® = 6¢/m ~ 0.66845. At that density,
Sigurgeirsson and Hey®sestimated a shear viscosity gf=
1.1364(mks T)¥2. With that viscosity, the correction in eq 12

essentially removes the system-size dependence of the calculated

diffusion coefficients taken from Table 1 of ref 46. In particular,
a linear two-parameter fit dDpgc to 1L (as had already been
used by Sigurgeirsson and He§feto extrapolate to infinite
system size) is consistent with the averéageafter correction
with eq 12. Consistent with our results for water and the LJ
fluid, the calculated shear viscosities of the hard-sphere*fluid
do not seem to depend strongly on system size.

V. Conclusions

We have tested a simple analytic correction for the significant
(1/L) system-size dependence of self-diffusion coefficients from
simulations with periodic boundary conditions. The correction
formula was derived previously by Dweg and Kremef Here,
we derive it by adapting the KirkwoeeRiseman theory of
polymer diffusiort-25to estimate the hydrodynamic self-interac-
tion from the differences in the Oseen tensors for finite
periodid®17and nonperiodic infinite systenidVe have applied
the correction formula to the diffusion coefficients of water, as

Yeh and Hummer

are essential in comparisons between simulations and experi-
ments!-8 and, in particular, in force-field parametrizations that
use measured diffusion coefficients as reference vaifés.
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