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We study the system-size dependence of translational diffusion coefficients and viscosities in molecular
dynamics simulations under periodic boundary conditions. Simulations of water under ambient conditions
and a Lennard-Jones (LJ) fluid show that the diffusion coefficients increase strongly as the system size increases.
We test a simple analytic correction for the system-size effects that is based on hydrodynamic arguments.
This correction scales asN-1/3, whereN is the number of particles. For a cubic simulation box of lengthL,
the diffusion coefficient corrected for system-size effects isD0 ) DPBC + 2.837297kBT/(6πηL), whereDPBC

is the diffusion coefficient calculated in the simulation,kB the Boltzmann constant,T the absolute temperature,
andη the shear viscosity of the solvent. For water, LJ fluids, and hard-sphere fluids, this correction quantitatively
accounts for the system-size dependence of the calculated self-diffusion coefficients. In contrast to diffusion
coefficients, the shear viscosities of water and the LJ fluid show no significant system-size dependences.

I. Introduction

Long-range interactions can lead to significant dependences
on the system size in computer simulations of condensed matter
under periodic boundary conditions.1 Effects from the Coulom-
bic 1/r interactions have been particularly well-characterized
(see, e.g., ref 2). Hydrodynamics can also lead to effective long-
range interactions, as witnessed, for instance, by the 1/r decay
of the Oseen tensor.3,4 Such hydrodynamic interactions can
indeed cause significant finite-size effects, as shown by Du¨nweg
and Kremer5,6 for the diffusion coefficients of polymers. For
the diffusion of small single-stranded ribonucleic acid molecules
(RNA) in water, we recently observed that the calculated
diffusion coefficients deviate from the extrapolated infinite-
system limit by factors of 2-3 for typical system sizes.7 Here,
we show that, even for relatively small molecules such as water,
the apparent self-diffusion coefficients depend significantly on
system size. For a system of∼2000 water molecules in a
periodically replicated cubic simulation cell, we find the
diffusion coefficient to be underestimated by∼10%. Correcting
for such systematic errors is particularly important in compari-
sons of simulations to experiment,7,8 and if transport properties
are used to assess and fit interaction potentials.

We use a simple hydrodynamic model to obtain an analytic
expression for the system-size dependence of the diffusion
coefficient. The same expression was obtained previously by
Dünweg and Kremer,6 using a closely related derivation. The
correction is analogous to that developed earlier for electrostatic
self-interactions in ion-solvation free energies.2,9-15 The hy-
drodynamic correction builds on earlier work by Hasimoto on
the viscous flow past lattices of spheres16 and by Beenakker17

on an Ewald summation18 of the Rotne-Prager hydrodynamic
mobility tensor.19 A related hydrodynamic correction for finite-
size effects was discussed by Fushiki,20 who imposed spherical

symmetry by applying the hydrodynamic boundary conditions
on the Wigner-Seitz sphere, rather than the simulation cell.21

To avoid possible confusion, we emphasize at the outset that
the hydrodynamic correction developed here isnot concerned
with so-called hydrodynamic long-time tails in, e.g., the particle
velocity autocorrelation function.22-24

The paper is outlined as follows. We first derive the Oseen
tensors3,4 for finite periodic and infinite nonperiodic systems.
From their difference, we estimate a hydrodynamic self-
interaction. Following the Kirkwood-Riseman theory of poly-
mer diffusion,4,25 we relate the periodicity-induced hydro-
dynamic self-interaction to the effect of periodic boundary
conditions on diffusion coefficients. This results in an analytic
correction formula for diffusion coefficients that we test for
water at ambient conditions, a Lennard-Jones (LJ) fluid at high
temperature and density, and a hard-sphere fluid. We also
calculate the viscosity of water and of the LJ fluid as a function
of system size.

II. Theory

Diffusion Coefficient. To derive an analytic correction for
system-size effects on the diffusion coefficient, we use a simple
hydrodynamic model of a particle surrounded by a solvent of
viscosity η in a periodically replicated simulation box. The
diffusion of this particle will be affected by hydrodynamic
interactions not only with the solvent in the immediate sur-
rounding, but also with the periodic images of the particle itself
and the solvent. In an infinite nonperiodic system, hydrodynamic
interactions between particles can be approximated by the Oseen
tensor.3 Here, we use an Oseen tensor modified for periodic
boundary conditions. From the difference between the Oseen
tensor in the finite periodic and infinite nonperiodic systems,
we will estimate the hydrodynamic self-interactions induced
specifically by the periodic boundary conditions. The Kirk-
wood-Riseman theory of polymer diffusion4,25 will then give
us an estimate of the system-size correction to the diffusion
coefficient. Our derivation is closely related to that of Du¨nweg
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and Kremer,6 which is built on an approximate Fourier
representation of the pair diffusion tensor.26

To construct the Oseen tensor for a finite periodic system,
we adapt a derivation for an infinite nonperiodic system3 that
was given by Stockmayer27 and attributed to R. Zwanzig.
Consider an incompressible fluid perturbed by a point force
acting at the center of a periodically replicated cell of volume
V. The perturbation of the velocity fieldW(r) caused by the point
force is assumed to satisfy the Stokes equation (i.e., the
linearized Navier-Stokes equation for an incompressible fluid),28

wherep is the pressure,∇ ) ∂/∂r, and [δ(r) - 1/V]F is the
point-force perturbation, withδ(r) as theδ function. The 1/V
term ensures that the net force on the cell is zero, such that
Newton’s third law is satisfied. For an incompressible fluid with
∇‚W ) 0, taking the divergence of eq 1 leads to

We transform these equations into Fourier space, such thatŴk

≡ ∫V W(r) exp(ik‚r) dr and W(r) ≡ V-1∑kŴk exp(-ik‚r). The
integral extends over the simulation cellV, andk is a vector of
the reciprocal lattice of simulation cells. For a cubic lattice of
lengthL, those vectors are given byk ) 2πL-1(lx, ly, lz), where
lx, ly, and lz are integers.

In Fourier space, eq 1 becomes

whereδk ) 1 for k ) 0 andδk ) 0 otherwise. For eq 2, we
obtain

Combination of eqs 3 and 4 results in

with 1 being the 3× 3 unity matrix. The Oseen mobility tensor
for a periodic system, which is defined by the relation

is then given by

where the sum extends over the reciprocal lattice vectors,
excludingk ) 0. In an infinite nonperiodic system, the Oseen
tensor is given by27

To connect the Oseen mobility tensorsT0(r) and TPBC(r) to
particle diffusion coefficients, we adapt the Kirkwood-Riseman
theory of polymer diffusion.4,25 In the infinite nonperiodic
system, the particle mobility tensor is given by (kBT)-1D01,
whereD0 is the diffusion coefficient of the particle in an infinite
system, kB the Boltzmann constant, andT the absolute

temperature. In the finite periodic system, we correct the
mobility for hydrodynamic self-interactions. The resulting
correction is given by the difference of the hydrodynamic self-
interactions in the finite periodic and infinite nonperiodic
systems,TPBC - T0. The diffusion tensor modified for periodic-
ity, DPBC, is then given by

This result is formally equivalent to eq 33 of Du¨nweg and
Kremer.6 We note that eq 9 is also obtained if we use the
Oseen-Burgers approximation29,30 to estimate the difference
in the diffusion coefficients of a small sphere (radius|r| f 0)
in a finite periodic and an infinite nonperiodic system.

From eq 9, we obtain theapparentscalar diffusion coefficient
DPBC by taking the trace:

In the lattice sum, we recognize the Ewald potential of
electrostatics.31-33 In particular, the limit of the term in square
brackets is identical to the self-interaction of a point charge in
a Wigner lattice:34

where the first sum is over the lattice vectorsn (excluding the
origin), andR is an arbitrary convergence factor (R > 0). For
a cubic simulation cell of lengthL, the lattice vectors aren )
L(lx, ly, lz), wherelx, ly, and lz are integers. This results in

with ê ≈ 2.837297.10,16,34,35The same expression was obtained
previously by Du¨nweg and Kremer.6 For noncubic unit cells,
the Ewald summation can be performed numerically, and values
for the constantê have been given, for instance, by Hasimoto.16

Interestingly, note that, as in electrostatics,10 the dominant
contribution to the correctionê comes from the compensating
background in the minimum-image cell (2.38 versus 2.837 for
the complete cubic lattice sum). The “-F/V” background force
density in eq 1, which reflects the requirement of zero net force
(i.e., momentum conservation, analogous to charge neutrality
in electrostatics), is thus essential and accounts for much of the
system-size dependence of diffusion coefficients.

Equation 12 will be particularly useful to correct the observed
diffusion coefficients of solutes at “infinite” dilution in a well-
characterized solvent of known viscosityη. To obtainD0, one
simply addskBTê/(6πηL) to the calculated apparent diffusion
coefficientDPBC. If the viscosity is not known, apparent diffusion
coefficientsDPBCshould be calculated for different system sizes.
D0 can then be estimated from they intercept of a linear fit of
DPBC, with respect to 1/L, which corresponds to an extrapolation
to infinite system size.

η∇2W(r) ) ∇p(r) - [δ(r) - 1
V]F (1)

∇2p - F‚∇[δ(r) - 1
V] ) 0 (2)

ηk2Ŵk ) ikp̂k + (1 - δk)F (3)

k2p̂k ) i(1 - δk)k‚F (4)

Ŵk )
1 - δk

ηk2 (1 - kk

k2)‚F (5)

W(r) ) TPBC(r)‚F (6)

TPBC(r) ) ∑
k

k* 0

exp(-ik‚r)

ηk2V
(1 -

kk

k2) (7)

T0(r) ) 1
8πηr(1 + rr

r2) (8)

DPBC) D01 + kBT lim
rf0

[TPBC(r) - T0(r)] (9)

DPBC)
1

3
Tr(DPBC) )

D0 +
kBT

6πη
lim
rf0[∑k

k* 0

4π exp(-ik‚r)

k2V
-

1

|r|] (10)

DPBC) D0 +
kBT

6πη[-
2R

π1/2
+ ∑

n
n* 0

erfc(Rn)

n
+ ∑

k
k* 0

4πe-k2/4R2

k2V
-

π
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DPBC) D0 -
kBTê
6πηL

(12)
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Alternatively, one can also obtain an approximate estimate
of the system-size correction by using the Stokes-Einstein
relation for the diffusion coefficient with either stick or slip
boundary conditions:24

whereR is the hydrodynamic radius of the particle. Equations
12 and 13 can be solved self-consistently to give

Equation 14 is an approximate correction formula for diffusion
coefficients that does not require the solvent viscosityη as input.
Instead, it requires an estimate of the hydrodynamic radiusR
and the choice of stick or slip boundary conditions.

We note that the result for the difference in the trace of the
periodic and nonperiodic Oseen tensors (eqs 7 and 8) is already
contained in eq 4.8 of the work of Hasimoto.16 Moreover,
Hasimoto’s solution of the Stokes equation under periodic
boundary conditions provides additional correction terms to eq
12 that are dependent on the particle size. From Hasimoto’s eq
5.25, we obtain the next order of the system-size correction, in
terms of the radiusRof a spherical particle in a cubic simulation
cell:

For all R < L/2, the particle-size-dependentR2/L3 term reduces
the system-size correction of eq 12 by a relatively small amount.

Hasimoto16 also explicitly comments on the need to include
a compensating background in the Stokes equation (here, 1/V
in eq 1), which, in the case of flow past a lattice of spheres,
results from the mean pressure gradient over a cell. This
eliminates the divergence problem noted by Burgers.16 We note
further that Beenakker’s17 Ewald summation of the Rotne-
Prager tensor19 also leads to eq 12, with the trace of the
correction to the Oseen tensor being zero. Beenakker’s analysis
did not explicitly consider the 1/V background term that results
from Newton’s third law, which is, however, implicitly added
to the otherwise divergent lattice sums when Ewald summation
is used.10,18,33

Finally, we note that the derivation of the hydrodynamic self-
interaction is largely analogous to that of ionic self-interactions
in electrostatics.2,9-15 Corresponding to the 1/V correction in
the source term of eq 1, the divergence of the electrostatic lattice
sum for a Wigner crystal is removed by a neutralizing
background charge (see, e.g., refs 31-33). Just as in electrostat-
ics, the lattice sums in eqs 7 and 10 are only conditionally
convergent and should be evaluated using summation over
spherical shells,34 which corresponds to Ewald summation. This
leads to eq 11.

Viscosity.The preceding analysis implicitly assumes that the
shear viscosityη of the fluid is independent of system size.
One might expect that the apparent viscosity of a system
simulated with periodic boundary conditions also suffers from
system-size effects, because of the Stokes-Einstein relation (eq

13). However, no significant system-size dependence was
observed in computer simulations of LJ fluids.6,36 To explore
the system-size dependence, we calculate the shear viscosity
η, using the Green-Kubo relation:1

where the integrand is the autocorrelation function ofδPxy(t),
which is the deviation of an off-diagonal element of the
instantaneous pressure tensor from the average (zero in an
infinitely long run). By symmetry, equivalent expressions are
obtained if we replaceδPxy in eq 16 with other off-diagonal
elements, and with differences between diagonal elements such
as δPxx - δPyy. The latter follows from a rotation of the
laboratory reference frame.36 One of the difficulties in using
eq 16 results from possible long-time tails in the correlation
functions.22-24

III. Simulations of Water

To test the system-size correction in eq 12, we calculate the
self-diffusion coefficientsDPBC of TIP3P water37 in cubic
simulation cells withN ) 128, 256, 512, 1024, and 2048 water
molecules. In the simulations, we use the Sander module of
AMBER 6.0 (University of California at San Francisco) with
particle-mesh Ewald summation for the long-range electrostatic
interactions.38,39The equations of motion are integrated with a
time step of 0.002 ps. A temperature of 298 K is maintained
with the Berendsen thermostat,40 using a relaxation time of 1
ps. The constant particle density of 33.00 nm-3 gives near-
ambient pressures. The production time of the simulations is
20 ns (N e 512), 15 ns (N ) 1024), and 10 ns (N ) 2048).
Simulation results are listed in Table 1.

Self-diffusion coefficients were calculated from the slope of
the mean-square displacement averaged over the trajectories of
individual particles,

where r(t) denotes particle trajectories that are continuous in
Cartesian space. After a brief initial period (∼1 ps for water
under ambient conditions), the mean-square displacement grows
linearly with time within statistical uncertainties (Figure 1), and
a straight-line fit gives us an estimate of the diffusion coefficient.

Figure 2 shows the apparent diffusion coefficients of water
from the simulations, as a function of the inverse box size (1/

D0≈ { kBT

6πηR
(stick)

kBT

4πηR
(slip)

(13)

D0≈ DPBC ×
(1 - êR

L )-1
(stick)

(1 - 2êR
3L )-1

(slip)
(14)

DPBC) D0 -
kBT

6πηL(ê - 4πR2

3L2 ) (15)

TABLE 1: Simulation Results for TIP3P Water under
Ambient Conditions (T ) 298 K, G ) 33.00 nm-3)a

Diffusion Coefficient
[10-5 cm2/s]

number
of water

molecules,
N

shear viscosity,
η [10-4 kg
m-1 s-1]

pressure,
p [bar] DPBC

b D0
c

128 3.00(09) -26.0(1.5) 4.884(32) 6.16(7)
256 3.06(04) -2.9(2.5) 5.123(27) 6.14(6)
512 3.14(09) 3.5(1.3) 5.315(14) 6.12(4)

1024 3.15(07) 10.8(1.0) 5.466(11) 6.11(3)
2048 3.06(10) 9.3(0.8) 5.590(13) 6.10(3)

a The numbers in parentheses indicate the statistical errors of the
last digits (one standard deviation of the mean estimated from block
averages).b Diffusion coefficient obtained from the simulations through
eq 17.c Diffusion coefficients corrected for system-size dependences,
using eq 12. For the corrections, we used a constant shear viscosity of
η ) (3.08 ( 0.1) × 10-4 kg m-1 s-1.

η ) V
kBT∫0

∞
〈δPxy(t)δPxy(0)〉 dt (16)

DPBC )lim
tf∞

∂

∂t
〈|r(t) - r(0)|2〉

6
(17)
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L). As indicated by the different slopes of the mean-square
displacement in Figure 1 and predicted by the hydrodynamic
theory, we find that the diffusion coefficientDPBC depends
linearly on 1/L. A straight-line fit extrapolates to a diffusion
coefficientD0 ) 6.05 × 10-5 cm2/s for an infinite system of
TIP3P water at 298 K and ambient pressure. If we apply eq 12
to correct the observed diffusion coefficients with a viscosity
of η ) (3.08( 0.1) × 10-4 kg m-1 s-1 (as calculated below),
the resulting diffusion coefficients are independent of system
size, within one estimated standard deviation of the error.
However, the average value ofD0 ) 6.11 × 10-5 cm2/s is
slightly larger than that obtained from a straight-line fit (∼0.06
× 10-5 cm2/s).

The small overcorrection of eq 12 is within the estimated
statistical errors. It may be caused, for instance, by contributions
from long-range electrostatic interactions, as would follow from
a simple argument. For charged and dipolar fluids, a finite
periodic system is expected to be less polarized overall than an
infinite nonperiodic system, because of the periodic boundary
conditions imposed on the polarization. The instantaneous
polarization effectively “traps” individual dipolar or charged
particles near their respective positions, thus reducing their
mobility.41 Following this argument, we expect that the smaller
overall polarization in a finite periodic system, compared to an
infinite system, would increase the apparent mobility. In turn,
this relative mobility increase would result in a smaller
correction factor for the system-size dependence ofDPBC than
that expected from hydrodynamics alone. This is consistent with
the results shown here for water, which is a polar molecule.
Consistent with this electrostatic explanation, we earlier found
an even larger effect for the diffusion of charged particles.7 For

potassium ions (with a single charge) and a small RNA (with
two charges) in water, scaling the correction factor of eq 12 by
0.88 and 0.76, respectively, accounted more accurately for the
observed system-size dependences. However, the mag-
nitude of “dielectric friction” effects is still a matter of debate.43

We also calculated the shear viscosity of TIP3P water under
ambient conditions, as a function of system size. Figure 3 shows
the normalized shear-stress autocorrelation function entering
eq 16 for the simulations withN ) 128-2048 water molecules.
We do not see any significant system-size dependences in the
autocorrelation functions, which is consistent with an essentially
system-size independent bulk pressure (see Table 1 and ref 42).
Moreover, within the accuracy of the data, the correlation
functions seem to decay exponentially at times oft J 0.3 ps.
With the assumption of exponential decays, we evaluate the
integral in eq 16 by summation up tot ) 0.4 ps, followed by
integration of the exponential fit at longer times. From that, we
obtain the viscosities shown in Figure 4 as a function of 1/L.
Based on the results shown in Figures 3 and 4, we conclude
that there is no strong system-size dependence in the viscosity
data, and that the value of the viscosity of TIP3P water at 298
K and a density of 33.00 nm-3 is (3.08( 0.1) × 10-4 kg m-1

s-1. Essentially system-size independent viscosities of water
were also obtained by Hess,44 and our viscosity value agrees
well with that for a slightly modified TIP3P water model, as
calculated by Feller et al.45 at 293 K using an Einstein relation.
In particular, the ratio of experimental and TIP3P viscosities is
∼2.9 in both cases.

IV. Lennard-Jones and Hard-Sphere Fluids

In this section, we study diffusion in Lennard-Jones (LJ) and
hard-sphere fluids to eliminate the possible influence of long-
range electrostatic interactions. Specifically, we have tested the

Figure 1. Mean-square displacement of TIP3P water as a function of
time t. The lines are forN ) 128, 256, 512, 1024, and 2048 water
molecules (bottom to top).

Figure 2. Diffusion coefficient of TIP3P water as a function of the
inverse box length 1/L (bottom scale) forN ) 128-2048 water
molecules (top scale). Circles show uncorrected results (DPBC) from
simulations, with error bars estimated from block averages. Squares
show the diffusion coefficients (D0) corrected for finite-size effects with
eq 12, as indicated by the arrow forN ) 256. The solid line is a straight-
line fit of the uncorrected diffusion coefficientsDPBC to 1/L. The dashed
line is a fit of the corrected diffusion coefficientsD0 to a constant.

Figure 3. Normalized shear-stress autocorrelation function in the
integrand of eq 16. Results are shown forN ) 128-2048 TIP3P water
molecules. The inset shows the autocorrelation function on a logarithmic
scale.

Figure 4. Shear viscosity (η) of TIP3P water as a function of the
inverse box length 1/L (bottom scale) forN ) 128-2048 water
molecules (top scale).
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system-size correction for the diffusion coefficient of a LJ fluid
at a reduced temperature ofkBT/ε ) 2.75 and a reduced density
of Fσ3 ) 0.7, whereε andσ are the well depth and intersection
with the zero-axis of the LJ potential, respectively. The
simulations were performed with the velocity Verlet algorithm1

at constant energy and volume, with a time step of 0.001 in
reduced units of time (σ(m/ε)1/2), except forN ) 512 and 1000,
where we used a time step of 0.005. The parameterm represents
the particle mass. Results are summarized in Table 2. In the
simulations, we use the full LJ potential, shifted to zero at a
cutoff distance ofL/2. In an earlier study by Holian and Evans,36

a LJ fluid at the same temperature and density was studied, but
with a potential truncated smoothly at∼1.74σ.

Figure 5 shows the resulting diffusion coefficients as a
function of 1/L. For N g 27 particles, the diffusion coefficient
scales as 1/L, as predicted by the hydrodynamic theory. This
1/L scaling was also observed for hard spheres.20 If we use the
viscosity of (1.31( 0.02)σ2(mε)-1/2 obtained from the data in
Figure 6 and Table 2, the diffusion coefficients corrected with
eq 12 are independent of system size and are fully consistent
with the value obtained by extrapolating a linear fit ofDPBC

(with variable slope and intercept) to infinite system size (1/L
f 0). Even for a very small system ofN ) 8 particles, the
deviation of the corrected diffusion coefficient from the average

of larger system sizes (N g 27) is less than two estimated
standard deviations of the statistical error. For the smallest
systems, a slight overestimate of the diffusion coefficients after
correction with eq 12 is expected from the particle-size-
dependent term in eq 15. If we assumeR ) σ/2 for theR2 term
in eq 15, theN ) 8 result is consistent with the corrected
diffusion coefficients for larger system sizes (see Figure 5). This
agreement is likely fortuitous, considering the small system size.
However, we do note that similar agreement down to the
smallest system sizes was obtained for system-size corrections
of electrostatic solvation effects.9,10,14,33Dünweg and Kremer6

also studied the system-size dependence of the self-diffusion
coefficient of a fluid with purely repulsive truncated LJ
interactions at a higher density and lower temperature. They
found more scatter in the plot ofDPBC versus 1/L, and a slope
that is in good agreement with eq 12.

As for water, we also examined the system-size dependence
of the shear viscosityη. Figure 6 shows the viscosity of the LJ
fluid as a function of 1/L. We do not find any significant system-
size dependence in the viscosity values forN g 27. A similar
conclusion was reached previously by Holian and Evans36 for
the truncated LJ fluid, and by Du¨nweg and Kremer6 for a LJ
fluid at a lower temperature. The viscosity results in Figure 6
and Table 2 were obtained by assuming an exponential decay
of the stress autocorrelation functions beyond a time of 0.2
σ(m/ε)1/2 (see Figure 7). We also fitted the long-time tails to an
algebraict-1.5 decay. That increased the viscosity from∼1.31
to ∼1.4σ2(mε)-1/2. A possible weak dependence on system size
was masked by the substantially larger statistical errors of the
viscosities obtained with corrections for algebraic long-time tails.

Finally, we have reanalyzed simulation data of Sigurgeirsson
and Heyes for hard-sphere fluids.46 Figure 8 shows the
dependence of the diffusion coefficientDPBC on the inverse box
length 1/L at a packing fraction ofú ) 0.35, corresponding to

TABLE 2: Simulation Results for the Lennard-Jones (LJ)
Fluid at a Reduced Density ofGσ3 ) 0.7

Diffusion Coefficient
[σ(ε/m)1/2]

particle
number,

N

average
temperature in

constant-energy
simulations,

kBT [ε]

shear
viscosity,

η [σ2(mε)-1/2] DPBC
b D0

c

8 2.749 2.248(700) 0.1873(13) 0.3276(23)
27 2.754 1.305(016) 0.2250(09) 0.3185(16)
64 2.746 1.301(011) 0.2486(06) 0.3187(11)

125 2.749 1.322(008) 0.2615(10) 0.3176(14)
216 2.749 1.309(013) 0.2729(07) 0.3196(10)
512 2.744 1.315(008) 0.2804(08) 0.3155(10)

1000 2.753 1.311(011) 0.2899(13) 0.3180(15)

a The numbers in parentheses indicate the statistical errors of the
last digits (one standard deviation of the mean estimated from block
averages).b Diffusion coefficient obtained from the simulations through
eq 17.c Diffusion coefficients corrected for system-size dependences,
using eq 12. For the corrections, we used a constant shear viscosity of
η ) (1.31 ( 0.01) σ2(mε)-1/2.

Figure 5. System-size dependence of the self-diffusion coefficient of
a Lennard-Jones (LJ) fluid (in units ofσ(ε/m)1/2) at a reduced
temperature ofkBT/ε ) 2.75 and a reduced density ofFσ3 ) 0.7. Error
bars correspond to one standard deviation estimated from block
averages. Circles show uncorrected results (DPBC) from simulations,
whereas squares show the diffusion coefficients (D0) corrected for finite-
size effects with eq 12, as indicated by the arrow forN ) 27. The
solid line is a straight-line fit of the uncorrected diffusion coefficients
DPBC to 1/L (for N g 27), where as the dashed line is a fit of the
corrected diffusion coefficientsD0 to a constant (N g 27). The triangle
shows theN ) 8 diffusion coefficient corrected with eq 15.

Figure 6. System-size dependence of the shear viscosityη of a LJ
fluid at a reduced temperature ofkBT/ε ) 2.75 and a reduced density
of Fσ3 ) 0.7.

Figure 7. Normalized shear-stress autocorrelation function of a LJ
fluid at a reduced temperature ofkBT/ε ) 2.75 and a reduced density
of Fσ3 ) 0.7. Results are shown for different numbers of particles
betweenN ) 27 andN ) 1000.

MD Study of Diffusion Coefficients and Viscosities J. Phys. Chem. B, Vol. 108, No. 40, 200415877



a particle density ofFσ3 ) 6ú/π ≈ 0.66845. At that density,
Sigurgeirsson and Heyes46 estimated a shear viscosity ofη )
1.136σ-2(mkBT)1/2. With that viscosity, the correction in eq 12
essentially removes the system-size dependence of the calculated
diffusion coefficients taken from Table 1 of ref 46. In particular,
a linear two-parameter fit ofDPBC to 1/L (as had already been
used by Sigurgeirsson and Heyes46 to extrapolate to infinite
system size) is consistent with the averageD0 after correction
with eq 12. Consistent with our results for water and the LJ
fluid, the calculated shear viscosities of the hard-sphere fluid46

do not seem to depend strongly on system size.

V. Conclusions

We have tested a simple analytic correction for the significant
(1/L) system-size dependence of self-diffusion coefficients from
simulations with periodic boundary conditions. The correction
formula was derived previously by Du¨nweg and Kremer.6 Here,
we derive it by adapting the Kirkwood-Riseman theory of
polymer diffusion4,25 to estimate the hydrodynamic self-interac-
tion from the differences in the Oseen tensors for finite
periodic16,17and nonperiodic infinite systems.3 We have applied
the correction formula to the diffusion coefficients of water, as
well as Lennard-Jones (LJ) and hard-sphere fluids, and observed
not only the predicted 1/L scaling but quantitative accuracy of
the predicted system-size dependence. We have also shown,
using computer simulations, that the shear viscosity, unlike the
diffusion coefficient, does not suffer from large finite-size effects
for the systems studied. However, possible system-size depend-
ences in the viscosity that result from hydrodynamic long-time
tails in the shear-stress autocorrelation function may not have
been resolved, because of statistical uncertainties.

For the self-diffusion coefficients of water, a LJ fluid, and a
hard-sphere fluid, we show that the analytic correction term (eq
12) removes system-size dependences within statistical uncer-
tainties. However, for polar and, particularly, charged particles
in a polar or ionic medium, electrostatic effects could result in
smaller correction terms, as observed for ions and RNA diffusing
in water.7 In those cases, the correction terms were inversely
proportional to the box length, but needed to be reduced by
constant scaling factors to account for the system-size depend-
ence of the calculated diffusion coefficients (DPBC). We present
arguments for an electrostatic origin of these deviations. System-
size corrections will be useful when results from different
simulations are compared.47,48More importantly, the corrections

are essential in comparisons between simulations and experi-
ments,7,8 and, in particular, in force-field parametrizations that
use measured diffusion coefficients as reference values.49,50
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