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Last Lecture… (#1)

● Basic Concepts of the Classical MD Simulations:
➢ Properties of the “particle” (no directions, fixed charge, connected by springs)

➢ MD simulation engine (Newton’s eqns.)

➢ Integration algorithm (Verlet-type)

➢ MD flowchart (structure initialization, minimization, equilibration etc)

➢ Periodic Boundary Conditions

➢ Molecular Force Field (interaction potentials)

● Lennard-Jones potential

Non-bonded interactions:



  

● Non-bonded (inter-molecular) interaction potentials in all-atom models  

● Lennard-Jones potential

VdW interactions are a subset of electrostatic interactions (do not confuse with 
Coulomb term !) involving permanent or induced dipoles. 

These include:

 Repulsive (1/r)12, approx. for Pauli exclusion principle

 Attractive (1/r)6 term:

➢ Permanent dipole – dipole interactions (Keesom force)

➢ Dipole-induced – dipole interactions (Debye force)

➢ Induced dipole – Induced dipole interactions (London dispersion forces)

Hydrogen bonds are NOT treated as vdW (LJ) forces: special treatment !!!

Van der Waals forces are weak compared to covalent bonds and electrostatic 
interactions, but play a fundamental role chemistry, biology, nanotechnology, surface 
science.

 Classical MD Simulation: Molecular FF (cont. Lecture #1)



 Classical MD Simulation: Molecular FF (cont. Lecture #1)

● Non-bonded (inter-molecular) interaction potentials in all-atom models  

● Periodic Boundary Conditions

● vdW interactions are spatially truncated using cutoff distance. The simulation cell has 
to be larger then 2 x cutoff.

● Electrostatic interactions can be computed fully with minimal additional cost using 
Particle Mesh Ewald (PME) method (1970).

➢ The direct summation of interaction energy between point particles is replaced by 
two summations: a direct sum of the short ranged potential in real space and a ‐
summation in Fourier space of the long-ranged part. Both summations converge 
quickly, so they may be truncated with little loss of accuracy and great improvement 
in required computational time. The method uses FFT which requires that the 
density field be evaluated on a discrete lattice in space (mesh).

● j and j’ are 
identical particles

● To calculate U
ij
 

we have to use

   ij’   NOT ij 



  

● 3D Periodic Boundary Conditions (other than Rectangular/Cubic)

Most of MD simulations !!!

● Stochastic Boundary Conditions (non-Periodic)
➢ Spherical BC

● The region of interest is solvated in a water sphere at 1atm. The water 
molecules are submitted to an additional force field that restrain them in the 
sphere; resemblance to bulk water ??

● None
➢ Implicit solvent simulations

● Poisson-Boltzmann equation for electr. pot. φ(r), 
knowing biomolecular charge density ρ(r)          
very time consuming !!!

● Generalized Born Equation, SASA, EEF1 etc.. 

ε=1

ε=80

 Classical MD Simulation: Molecular FF (cont. Lecture #1)



  

● Summary

Force-field development is a great challenge:   
➢ K_{bond,angle,torsion}, equilibrium values, multiplicities, phases, ε, σ, partial charges

Combination of empirical (MM) and QM calculations, fit range of condensed phase data; force field 
has to be tested to check if reproduces correctly the structural, dynamical and thermodynamical 
properties of molecules that have been well characterized experimentally.‐

 Classical MD Simulation: Molecular FF (cont. Lecture #1)



  

 Molecular Force Field Parametrization (cont. Lecture #1)



  

Example: Bad Molecular Force Field (cont. Lecture #1)

● Model parametrization is a great challenge !!!! 

MD Simulation Time, ns

~1.5 years to stabilize double-stranded DNA



MD Simulations: Connection to Statistical Mechanics

●  Newtonian dynamics

●  Pluses: 
➢ First-principle approach
➢ Easy to integrate 
➢ Deterministic (no stochasticity, reproducible)

●  Minuses: 
➢ Abstract closed system (energy conserved)
➢ Does not correspond to any realistic experiment !!!

➢ Corresponds to microcanonical (N,V,E) ensemble in statistical mechanics

● Time step:

for most all-atom 
simulations



MD Simulations: Connection to Statistical Mechanics

●  Microcanonical Ensemble

➢ Microstates: U({r}),        U({α,β,γ,δ,ε,ζ}) E=constant



MD Simulations: Connection to Statistical Mechanics

●  Microcanonical Ensemble: Newtonian Dynamics in Practice

Constant energy dynamics (N,V,E) is rarely used in MD for 2 reasons:

➢ In real experiment it’s way more easier to operate with other thermodynamic 
parameters: T, P

➢ Inaccuracies of the MD algorithm lead to heating up the system:

➔ We can couple the system to a heat reservoir to absorb the excess heat

Integration algorithm
Thermostat

Barostat
Other Constraints

● Canonical Ensemble:



MD Simulations: Connection to Statistical Mechanics

●  Canonical Ensemble (N,V,T)

➢ Maxwell-Boltzmann distribution 
for system velocities for 
canonical microstate

➢ Boltzmann probability 
distribution for canonical 
microstatate 

➢ Free Energy (Hemholtz)

Can be measured from MD!!!

The partition function is a very complex 
function to compute, because it represents
a measure of the whole space accessible 
to the system

System (N,V,T0)

T0



MD Simulations: Connection to Statistical Mechanics

●  Ensemble Average



MD Simulations: Connection to Statistical Mechanics

●  Canonical Ensemble (N,P,T)

Allow volume to fluctuate

➢ Gibbs Free Energy

➢ Binding Constants



MD Simulations: Connection to Statistical Mechanics

● Ergodic hypothesis: marriage of statistical mechanics & computational physics (MD)

Ensemble Average                            =                   Time Average

● The microstates sampled by MD are usually a small subset of the entire ensemble

● Phase space of the system has to be continuous, all (sub)-minima should be accessible 
on the time scale of MD simulation and be sampled with correct probabilities



MD Simulations: Connection to Statistical Mechanics

● Ergodic hypothesis: intuitive view

● Non-ergodic systems have parts of the phase space that are inaccessible, i.e. they are 
not explored during timescale of interest. 

● System examples: 
● Glasses
● Intrinsically disordered proteins



MD Simulations: Connection to Statistical Mechanics

● 2D representations of the protein’s energy landscape



MD Simulations: Connection to Statistical Mechanics

● “Normal” proteins fold via “all-or-none” mechanism
➢ 200-residue protein has ~2100 conformations; it would take ~1010 years to fold (Levintal’s 

paradox) – NATURE comes to rescue!!!  

Quartet model for IDP functioning
● IDPs are structurally diverse:

➢ Existence of stable intermediates
➢ Many folding pathways
➢ Tremendously hindered kinetics

● ~30% of eukaryotic proteins are IDPs
➢ Can function in “normal” way
➢ Can regulate many transcriptional and 

signal transduction processes
➢ Can act as highly controlled enzymes
➢ Implicated in neurodegenerative deceases 

(Alzheimer’s, Parkinson’s, Huntington’s  )

Hard to study 
experimentally & 

theoretically 

Protein Sci. 2002 Apr; 11(4): 739–756

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373528/#


MD Simulations: Connection to Statistical Mechanics

● Thermodynamic Ensembles: Summary

➢ Microcanonical ensemble (constant N,V,E) 
sampling is obtained by simple integration of the 
Newtonian dynamics:

   - Verlet-like algorithms

➢ Canonical ensemble:
constant N,V,T
sampling is obtained by using thermostats:
● Andersen thermostat
● Berendsen thermostat
● Nose-Hoover thermostat
● Langevin Dynamics

➢ Canonical ensemble:
constant N,P,T

● In addition to the thermostat, the volume of the 
system is allowed to fluctuate, and is regulated
by barostat algorithms

Non-
Hamiltonian 
dynamics

Most often 
used in MD



MD Simulations: Connection to Statistical Mechanics

● Non-Hamiltonian Dynamics to Generate Canonical Ensembles

➢ Based on positions and velocities we have to calculate 
statistical quantiles such as temperature.

Equipartition theorem (kinetic theory of gases)

Microscopic definition of temperature

Fluctuations on the order of 

➢ Velocity scaling algorithms

Temperature relaxation algorithms: 

● Stochastic coupling to hypothetical heat bath
● Stochastic dynamics (Langevin)



MD Simulations: Connection to Statistical Mechanics

● Thermostatting Algorithms

T, K

300
Straight forward but not accurate



MD Simulations: Connection to Statistical Mechanics

● Thermostatting Algorithms

But… it becomes a combination of MD and MC… !!! 

What about dynamical properties ?

Velocities and, thus, positions are 
brutalized by such rescaling approaches



MD Simulations: Connection to Statistical Mechanics

● Thermostatting Algorithms

Nosé-Hoover thermostat: a clever way of using extended Lagrangian formalism (lecture 1)

Very accurate, deterministic. 



MD Simulations: Connection to Statistical Mechanics

● Thermostatting (and Sampling) by Means of Langevin Dynamics

Newton’s equation Friction force with 
memory kernel

Random 
force

“White” noise

Langevin equation

Overdamped Langevin: Brownian Dynamics 

Friction coeff. γ: 
too small (weak coupling), too big (no 

acceleration), constant/different  for all atoms

Fluctuation-
dissipation theorem 

Brownian Motion 



MD Simulations: Connection to Statistical Mechanics

● Thermostatting (and Sampling) by Means of Langevin Dynamics

Identical algorithm is used for both thermostatting (explicit solvent simulations) and 
actual dynamics in frictious environment (e.g. implicit solvent simulations)  

Example: Na+ ion diffusion

explicit solventimplicit solvent

damping_coeff. = k
B
T/(m D) = 81 ps-1 damping_coeff. ~ [1 – 5 ] ps-1

D(Na+)  = 133 Å 2/ns

experimental

NAMD:  D(Na+)  = 136 Å 2/ns NAMD:  D(Na+)  = 134 Å 2/ns



MD Simulations: Connection to Statistical Mechanics

● Brownian Motion

It can be demonstrated (Fokker-Plank formalism) that density of 
Brownian particles obeys diffusion equation: 

➢ Diffusion equation

➢ Einstein relation

➢ Stocks-Einstein relation

x



MD Simulations: Connection to Statistical Mechanics

● Diffusion Coefficient from MD simulations



MD Simulations: Connection to Statistical Mechanics

● Diffusion Coefficient from MD simulations: Periodic Boundary Effects

correction



MD Simulations

● Time series and time correlation functions
NaCl at c~150 mM in water; #(NaCl) = 15

●

●

●
Time, psions

Na+ #1 

Na+ #2 

Δt1
Δt2

Δt3
Global slide 
along time series

Double averaging:

➢ Over time interval
➢ Over molecules

● Is these time series 
for particle’s 
displacement 
(diffusion) is realistic ? 

Q:



MD Simulations

● Time series and time correlation functions
NaCl at c~150 mM in water; #(NaCl) = 15

●

●

●
Time, psions

Na+ #1 

Na+ #2 

Δt1
Δt2

Δt3
Global slide 
along time series

Double averaging:

➢ Over time interval
➢ Over molecules

Broadening 
with time !



Na+ #1 

Δt1
Δt2

Δt3
Global slide 
along time series

MD Simulations

● Time series and time correlation functions
NaCl at c~150 mM in water; #(NaCl) = 15

●

●

●

Na+ #1 

Δt3

Δt2

Δt1

Na+ #2 



MD Simulations

● Time series and time correlation functions: other examples

➢ Na+ ion residence time in the DNA minor groove

➢ DNA persistence length and correlation modes

Savelyev, Phys. Chem. Chem. Phys., 2012, 14, 2250–2254

J. Chem. Theory Comput. 2015, 11, 4473−4485

PNAS, 2010 107 (47) 20340-20345

Longevity of MD simulation  ~

u1

u2

u3

u4 u5



MD Simulations

● Time series and spacial correlation functions

Radial Distribution Function: simple case of spherical symmetry

Direct 
contact

2nd coordination 
shell



MD Simulations

● Time series and spacial correlation functions
Radial Distribution Function: asymmetrical case

Needs to be 
computed 
numerically

● Competitive binding of ions/small molecules to the solute
● Binding to specific areas of biomolecule (DNA minor groove) 

● Biomolecular partial specific volume (study changes in hydration layer caused 
by changes in environment, e.g. salt concentration) 



MD Simulations

● Partial specific volume (PSV): 

● PSV is intimately related to statistical-mechanical formulation of excess volume 
caused by insertion of the solute into the solvent:

Surface area & intrinsic volume definitions

ν
2 
- “intrinsic” solute volume

δ
1 
- # of waters in the hydration layer

v
1 
- PSV of the water in hydration layer

v
0 
- PSV of the water in the bulk

MD can address 
all these issues 
and provide 
closest 
correspondence 
with the theory!!



MD Simulations

● Partial specific volume (PSV): intuitive picture

Analogy with disturbance of time-mater by gravitation

➢ Time-matter → solvent
➢ “Black hole” → biomolecule
➢ Moon → ions/other solvent 

molecules

PSV may be thought of as a 
quantitative measure of 
perturbation of the bulk 
solvent by biological molecule 



MD Simulations

● Partial specific volume (PSV): 

ν
2 
- “intrinsic” solute volume

δ
1 
- # of waters in the hydration layer

v
1 
- PSV of the water in hydration layer

v
0 
- PSV of the water in the bulk
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